
TRACKING ANALYSIS OF VARIABLE XE-NLMF ALGORITHM IN THE PRESENCE OF
BOTH RANDOM AND CYCLIC NONSTATIONARITIES

Muhammad Moinuddin and Azzedine Zerguine

Electrical Engineering Department
King Fahd University of Petroleum and Minerals,

Dhahran,31261, Saudi Arabia.
{moinudin, azzedine}@kfupm.edu.sa

ABSTRACT

In this work, tracking analysis of variable normalized least
mean fourth (XE-NLMF) algorithm is carried out in the
presence of two sources of nonstationarites: 1) carrier fre-
quency offset between transmitter and receiver and 2) ran-
dom variations in the environment. A novel approach to this
analysis is carried out here using the concept of energy con-
servation. Close agreement between analytical analysis and
simulation results is obtained. The results show that, unlike
in the stationary case, the steady-state excess mean square
error (MSE) is not a monotonically increasing function of
the step size.

1. INTRODUCTION

Cyclic and random system nonstationarities are a common
impairment in communication systems and especially in ap-
plications that involve channel estimation, channel equal-
ization, and inter-symbol-interference cancellation. Ran-
dom nonstationarity is present due to variations in chan-
nel characteristics which is true in most of cases, particu-
larly in the case of a mobile communication environment
[1]. Cyclic system nonstationarities arise in communication
systems due to mismatches between the transmitter and re-
ceiver carrier generator.

The ability of adaptive filtering algorithms to track such
system variations is not yet fully understood. In this re-
gard, a recent contribution [2] presented a first-order anal-
ysis of the performance of the Least Mean Squares (LMS)
algorithm [3] in the presence of the carrier frequency off-
set. In [4]-[5], a general framework for the tracking analy-
sis of adaptive algorithms was developed. It can handle both
cyclic as well as random system nonstationarities simulta-
neously. This framework, based on an energy conservation
principle [6], holds for all adaptive algorithms whose recur-
sions are of the form:

wn+1 = wn + γxexnf(en), (1)

where f(en) denotes a general scalar function of the out-
put estimation error en, wn is the filter coefficient vector
of the adaptive filter, xn is the input vector, and γxe is the
step-size used in the adaptation of filter coefficients. In the
case of variable normalized least mean fourth (XE-NLMF)
algorithm [7], the nonlinearity f(en) is defined by:

f(en) =
e3

n

δ + (1 − αn)‖xn‖2 + αn‖en‖2
, (2)

where ‖xn‖2, ‖en‖2 are the Eucledian norms of the input
sequence xn and error vector en, respectively. As shown in
equation (6), the LMF algorithm [8]-[9] is normalized [10]
by both the signal power and error power.

The mixing power parameter, αn, is confined to the in-
terval [0,1] and will be recursively adapted to adjust the sig-
nal power, ‖xn‖2, and error power, ‖en‖2, for maximum
performance and is given by [7]:

αn =
2√
π

∫ µn

0

e−y2
dy, (3)

with µn updated according to:

µn+1 = νµn + pn|enen−1|. (4)

The quantity pn is updated according to the weighted sum
of the past three samples of αn in the following way:

pn = a[αn−2 + αn−1 + αn], (5)

a is a constant.
In this work, tracking analysis of variable XE-NLMF

algorithm [7] is carried out in the presence of both random
and acyclic nonstationarities.

2. SYSTEM MODEL AND PERFORMANCE
MEASURE

In this section, a general system model is presented which
includes both types of nonstationarities, that is random and
cyclic ones.



To start, consider the noisy measurement dn that arises
in a model of the form:

dn = xT
nwo

nejΩn + ξn, (6)

where ξn is the measurement noise and wo
n is the unknown

system to be tracked. The multiplicative term ejΩn accounts
for a possible frequency offset between the transmitter and
receiver carriers in a digital communication scenario. Fur-
thermore it is assumed that the unknown system vector wo

n

is randomly changing according to:

wo
n = wo + qn, (7)

where wo is a fixed vector, and qn is assumed to be a zero-
mean stationary random vector process with a positive def-
inite autocorrelation matrix Qn = E[qnqT

n ]. Moreover, it
is also assumed that the sequence {qn} is mutually inde-
pendent of the sequences {xn} and {ξn}. Thus, from the
generalized system model given by Equations (6) and (7), it
can be seen that the effects of both cyclic and random sys-
tem nonstationarities are included in this system model.
In the steady-state analysis of adaptive algorithms, an im-
portant measure of performance is their steady-state mean-
square-error (MSE), which is defined as:

MSE = lim
n→∞E[e2

n] (8)

= lim
n→∞E

{
[ξn + xT

nvn]2
}
, (9)

where vn is the weight-error vector defined as:

vn = wo
nejΩn − wn. (10)

Also of interest, is the steady-state excess mean-square-error
(EMSE), denoted by ζ and given by:

ζ = lim
n→∞ E

{
[xT

nvn]2
}
. (11)

3. FUNDAMENTAL ENERGY CONSERVATION
RELATION

The fundamental energy conservation relation [4] is pre-
sented next. Using Equation (1) and Equation (7), the fol-
lowing recursion is obtained:

vn+1 = vn − γxex∗
nf(en) + cnejΩn, (12)

where cn is defined as:

cn = wo(ejΩ − 1) + qn+1e
jΩ − qn. (13)

Now, let’s define the following a-priori estimation error, ean =
xT

nvn and a-posteriori estimation error, epn = xT
n (vn+1 −

cnejΩn). Then, it is very easy to show that the estimation
error and the a priori error are related via en = ean + ξn.

Also, the a-posteriori error is defined in terms of the a priori
error as follows:

epn = ean − γxe

µ̂n
f(en), (14)

where µ̂n = 1/ ‖xn‖2. Substituting Equation (14) into
Equation(12) results into the following update relation:

vn+1 = vn − µ̂nx∗
n[ean − epn] + cnejΩn. (15)

By evaluating the energies of both sides of the above equa-
tion (taking into account that µ̂n ‖xn‖2 = 1) , the following
relation is obtained:

‖ vn+1 − cnejΩn ‖2 +µ̂n|ean|2 =‖ vn ‖2 +µ̂n|epn|2.
(16)

It can be seen that if Ω = 0 (i.e., no frequency offset be-
tween the transmitter and the receiver), the above equation
reduces to the basic fundamental energy conservation rela-
tion.

4. TRACKING ANALYSIS

The energy relation (16) will be used to evaluate the excess-
mean-square error at steady state. But before starting the
analysis, first the following assumptions are stated:

A1 In steady-state, the weight error vector vn takes the
generic form znejΩn, with the stationary random pro-
cess zn independent of the frequency offset Ω.

A2 The noise ξn is a zero-mean iid process, and is indepen-
dent of the input process. This assumption is justified
in several practical examples.

Using Equation (14), assumption A1, and taking expecta-
tion of both sides of Equation (16) and the fact that at steady
state E[vn+1] = E[vn], the following relation can be ob-
tained:

E[µ̂n ‖ ean ‖2] = 2tr{Qn}+ ‖ wo ‖2 |1 − ejΩ|2
−2Re{E[

q∗
n(zn − γxex∗

nf(en)e−jΩn)
]}

−2Re{(1− ejΩ)∗wo∗

×E[zn − γxex∗
nf(en)e−jΩn]}

+E
[
µ̂n|ean − γxe

µ̂n
f(en)|2

]
, (17)

which can be used to solve for the steady-state excess-mean-
square error (EMSE).

To find the value of z = E[zn], Equation (12) is used
where it is multiplied by the term e−jΩn and then expecta-
tion is taken on both sides to get:

(1−ejΩ)z = γxeE
(
x∗

nf(en)e−jΩn
)
+wo(1−ejΩ). (18)



For the case of variable XE-NLMF algorithm, the func-
tion f(en) can be approximated by:

f(en) ≈ 3eanξ2
n + ξ3

n

δ + (1 − αn)‖xn‖2 + αn‖en‖2
(19)

which yields the value of z at steady-state:

z =

[
I − 3γxeσ

2
w

(1 − ejΩ)
R
c1

]−1

wo, (20)

where

c1 = [δ + (1 − E[αn])tr{R} + E[αn]tr{E}], (21)

R = E
[
xnxn

T
]
, and E = E

[
enen

T
]

represent the auto-
correlation of the input signal and error signal, respectively,
and σ2

w is the noise variance.
Ultimately, the steady-state excess-mean-square error,

ζ, for the variable XE-NLMF algorithm is obtained from
Equation (17):

ζ =
σ2

w

(σ2
w − 3γxeφ4

w)

[
tr{QnR} +

γxeφ
6
w

12σ2
w

+
βc1

12γxeσ2
w

]
.

(22)

where

β =
∣∣1 − ejΩ

∣∣2Re
{
tr

(‖wo‖2(I − 2X1X2)
)}

,

X1 =

[
I − 3γxeσ

2
w

c1
R

]
,

X2 =

[
(1 − ejΩ)I − 3γxeσ

2
w

c1
R

]−1

.

5. APPROXIMATE EXPRESSIONS FOR WHITE
GAUSSIAN INPUT

For a white Gaussian input signal, the autocorrelation of the
input signal R = σ2

xI, and therefore:

tr{R} = Nσ2
x, (23)

where N is the filter length. Thus, approximate expression
for the NLMF algorithm is found to be:

ζ =
σ2

w

(σ2
w − 3γxeφ4

w)

[
σ2

xtr{Qn} +
γxeφ

6
w

12σ2
w

+
NΩ2 ‖ wo ‖2

12γxeσ2
w

(
1 +

2(c2 − 3γxeσ
2
wσ2

x)
3γxeσ2

wσ2
x

)]
.

(24)

where

c2 = δ + N(1 − E[αn)]σ2
x + NE[αn)]σ2

e . (25)
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Fig. 1. Analytical and experimental ζ for Ω =0.01, Ω=0.02
and Ω=0.03, and tr{Qn} = 10−7.

6. SIMULATION RESULTS

Simulation results are presented to validate the theoretical
findings embodied in Equation (24), for different values of
Ω. While the system characteristics are time-varying, the
unknown system is given by [1.0119−j0.7589, −0.3796+
j0.5059]T . The signal-to-noise ratio is set equal to 10 dB
and two values are considered for tr{Qn}: a very small
value of tr{Qn} = 10−7, and a very large one of tr{Qn} =
10−2.

Figure 1 depicts the comparison between both the theo-
retical and simulation results for three different values of Ω,
i.e., 0.01, 0.02, and 0.03. As can be seen from this Figure,
close agreement between theory and simulation is obtained.
This Figure shows also that the steady-state EMSE has a
minimum value for a certain value of the step size γxe, e.g.,
for Ω =0.01, γxe is around 0.43. Also, unlike in the sta-
tionary case, the steady-state EMSE is not a monotonically
increasing function of the step-size γxe. Furthermore, it is
observed from this figure that degradation in performance is
obtained by increasing the frequency offset Ω.

Similar behaviour is observed in Figure 2 for the case
of Ω = 0.1, Ω = 0.2, and Ω = 0.3. As expected in
this case, both theory and simulation are in close agreement
since here too the steady-state excess-mean-square-error of
the XE-NLMF algorithm gets larger for larger values of Ω.

Figures 1 and 2 are obtained for the case when tr{Qn} =
10−7 which is represents a small value. Increasing this
value to 10−2, the results depicted in Figure 3 for three dif-
ferent values of Ω, i.e., 0.1, 0.2, and 0.3, still show that the
previously stated observations are similar to those obtained
for a smaller value of tr{Qn}.
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Fig. 2. Analytical and experimental ζ for Ω =0.1, Ω=0.2
and Ω=0.3, and tr{Qn} = 10−7.

Finally, close agreement between theory and simulation
in both cases (two different values of tr{Qn}) and different
values of Ω is obtained. Also, the consistency in the perfor-
mance of the steady-state excess-mean-square error of the
XE-NLMF algorithm is observed on other experiments.

7. CONCLUSION

The analytical results of the steady-state EMSE are derived
for the variable XE-NLMF algorithm in the presence of both
random and cyclic nonstationarities. The results, show that
unlike in the stationary case, the steady-state EMSE is not
a monotonically increasing function of the step-size γxe,
while the ability of the variable XE-NLMF algorithm to
track the variations in the environment degrades by increas-
ing the frequency offset Ω.
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