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ABSTRACT

A generalized blind equalization scheme, insensitive to phase
shifts introduced by the channel and small carrier phase
offsets, is derived. Multiple constraints optimization tech-
niques have been used in the development of the proposed
algorithm. This scheme is an improved version of a dual
mode modified constant modulus algorithm (MCMA). It uses
the principle of minimal disturbance to induce robustness
and stability by avoiding the gradient noise amplification
problem. Better performance is obtained when compared
to Lin’s algorithm and that of the MCMA with decision di-
rected mode (MCMA-DD).

1. INTRODUCTION
Blind equalization is a process of determining and equaliz-
ing the channel response without the aid of a training se-
quence. The constant modulus algorithm (CMA) happens
to be an effective member of the Godard [1] class of blind
equalization algorithms. However, the main drawbacks of
CMA are the presence of local minima and a slow rate of
convergence [2, 3]

The method of constrained optimization, to obtain a nor-
malized version of CMA which provided a better conver-
gence rate when compared to the CMA, was introduced in
[4]. Tanrikulu et.al. [5] used the concept of multiple con-
straints by utilizing the past inputs to the equalizer to further
enhance the convergence rate. However, CMA and its nor-
malized version lacked the capability to recover from the
arbitrary phase shift due to the channel and to handle carrier
phase offsets; apart from giving higher error floors.

Oh and Chin [6] modified the CMA (MCMA) cost func-
tion by separating it into the real and the imaginary parts
and obtained a new cost function that could recover from
the phase shift due to the channel and also could handle
small carrier phase offsets. In another paper [7], the same
authors again modified the previously introduced MCMA
by infusing the decision directed (DD) mode (MCMA-DD)
to achieve better convergence rate and reduced error floors.

Lin [8] proposed a new scheme which utilizes the prin-
ciple of minimal disturbance to introduce a normalized ver-
sion of the MCMA-DD that resulted in better performance
than MCMA-DD.

This work generalizes that of Lin’s [8] to achieve better
convergence rate and better error floor at a slightly increased
complexity using the principle of multiple constraints [5].

2. THE NEW GENERALIZED SCHEME

Consider the baseband representation for digital data trans-
mission in Figure 1. The received signal can be modeled as
[6]:

x(n) =
L−1∑
i=0

c(i)a(n − i)ejφ(n) + υ(n), (1)
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Fig. 1. Blind equalization in the baseband.

where c(i) {0 ≤ i ≤ L − 1} are the complex channel tap
weights, L is the length of the channel, {a(n)} are the com-
plex data symbols, and ejφ(n) is caused by a carrier phase
error given by φ(n) = 2π∆f/R where ∆(f) is the fre-
quency shift and R is the dispersion constant. In order to
remove the channel distortion an equalizer with tap weight
vector w(n) = [w0(n), w1(n), . . . , wN−1(n)]T is chosen.

The cost function as given by Lin [8] can be modified by
utilizing the behavior of the past inputs and adding multiple
constraints [5]. Thus the new constrained problem can be



formulated as:

J = min
w(n+1)

{
‖w(n + 1) − w(n)‖2

2+

m∑
k=1

[λ1ksR(n − k + 1)(s2
R(n − k + 1) − R2

R)]+

m∑
k=1

[λ2ksI(n − k + 1)(s2
I(n − k + 1) − R2

I)]
}
,

(2)

where

RR =
E[|aR(n)|2]
E[|aR(n)|] , RI =

E[|aI(n)|2]
E[|aI(n)|] , (3)

λ1k, λ2k {1 ≤ k ≤ m} are the Lagrange multipliers, and
the a posteriori output s(n) is defined as:

s(n) = sR(n) + jsI(n) = wH(n + 1)x(n). (4)

If hard constraints are enforced, the above equation be-
comes:

s(n) = RRsgn[yR(n)] + jRIsgn[yI(n)]. (5)

Note that for m = 1, Equation (2) reduces to that of Lin’s
[8].

By using the method of Lagrange multipliers, Equation
(2) can be solved and the following tap update equation is
obtained:

w(n + 1) = w(n) + XΩ−1[s − y]H , (6)

where s, y, X, Ω, and y(n) are defined, respectively, as:

s =
[

s(n) s(n − 1) .... s(n − k + 1)
]
,

y =
[

y(n) y(n − 1) .... y(n − k + 1)
]
,

X =
[

x(n) x(n − 1) .... x(n − k + 1)
]
,

Ω = XHX, and

y(n) = wH(n)x(n).

Equation (6) can be modified by replacing the difference of
the vectors s and y by a single vector E, and using a learning
parameter µ to become:

w(n + 1) = w(n) + µXΩ−1EH . (7)

For the case of m = k constraints, E can be written as

E =
[
E1 E2 .... Ek

]
, (8)

where each Ei (1 ≤ i ≤ k) can be written as:

Ei =RRsgn[yR(n − i + 1)]+
jRIsgn[yI(n − i + 1)] − y(n − i + 1).

(9)
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Fig. 2. 16-QAM constellation decision boundaries repre-
senting Â.

2.1. Decision Directed Mode

Lin [8] incorporated the decision directed mode in his algo-
rithm in order to obtain a higher convergence rate and low
steady state error. The above derived algorithm can also
be switched into the decision directed mode once the er-
ror drops below a particular threshold value. The threshold
value can be chosen as shown in Figure 2.

Once the equalizer output, y(n), reaches within the bound-
ary levels as specified in Figure 2, the algorithm can be
switched to the decision directed mode. Thus the values
of Ei’s (1 ≤ i ≤ k) in Equation (9) are switched to the
decision directed mode accordingly:

Ei =




RRsgn[yR(n − i + 1)] + jRIsgn[yI(n − i + 1)]

− y(n − i + 1), y(n − i + 1) � C

RRsgn[yR(n − i + 1)] + jRIsgn[yI(n − i + 1)]

− Â, y(n − i + 1) ⊆ C,
(10)

where Â is the desired output as shown in Figure 2. One
good aspect of this algorithm is the smooth shift from the
blind mode to the decision directed mode. This is in accor-
dance to the magnitude of the equalizer output error without
any specific detection mechanism, because the algorithm
can cluster the output signals at the right positions. Hence,
the equalization, both in the blind mode and the decision
directed mode, operates with the same stability as the nor-
malized least mean square algorithm [8]. The main differ-
ence between the new scheme and the one proposed by Lin
[8] with respect to the decision directed mode is that, in the
new scheme unless and until both the real and the imagi-
nary parts of the output signal are inside the bounded box,
simultaneously, as shown in Figure 2, the algorithm doesn’t
shift to the decision directed mode, whereas in case of the



Lin’s algorithm the decision directed mode is applied to the
real and the imaginary parts independently. Applying the
decision directed mode in a way as used in the newly pro-
posed scheme, gives more scope for the algorithm in the
blind mode and it performs in a better fashion when dealing
with the signals infected by phase offset. Simulation results
carried out for this purpose, but unfortunately due to space
limitations not reported here, show the superiority of our
algorithm over Lin’s one.

3. SIMULATION RESULTS

In this section, we illustrate the performance of the pro-
posed blind equalization algorithm with m = 1, m = 2, and
m = 3 corresponding, respectively, to single, double, and
triple constraints with that of MCMA-DD algorithm. Three
different scenarios on two different channels are considered
for this purpose. The signal-to-noise-ratio was taken as 30
dB. The residual inter symbol interference (ISI) as well the
mean-square error (MSE) are used as performance indices.
The residual ISI is defined as [8]:

ISI =
∑

k |c(k) ∗ w∗(k)|2 − |c(k) ∗ w∗(k)|2max

|c(k) ∗ w∗(k)|2max

.

The ensemble average residual ISI’s and MSE are obtained
from 100 Monte Carlo runs. The a priori inputs to the
equalizer are chosen in such a way that the auto-covariance
matrix Ω is non singular.

In the first part of the simulations, a complex 9-tap transver-
sal equalizer is used and it is initialized so that the center
tap is set to 1 and the other taps are set to zero. The channel
(channel I) used is taken from [9]. The value of φ(n) here
is assumed to be zero. As it is clearly evident from Fig. 3
and Fig. 4 that as the number of constraints increases the
convergence rate is enhanced. The MCMA-DD algorithm
converges slower than even the algorithm with single con-
straint.
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Fig. 3. MSE comparison for different constraints for com-
plex channel I.
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Fig. 4. Residual ISI comparison for different constraints
for complex channel I.

In the second part of the simulations, a complex 25-tap
transversal equalizer is used and it is initialized so that the
center tap is set to one and other taps are set to zero. The
channel (channel II) used is taken from [10]. Even though
this channel is very severe and introduces a large amount of
ISI , the proposed algorithm is able to withstand the sever-
ity of the channel and gives better performance than that of
MCMA-DD as depicted in Fig. 5 and Fig. 6; also as can
be noticed these figures the performance of MCMA-DD de-
grades when a severe channel (channel II) is used.
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Fig. 5. MSE comparison for different constraints for com-
plex channel II.

Finally, in this part of the simulations a phase error is
deliberately introduced into channel I by setting the value
of φ(n) = 10−5. The other conditions are set the same as
assumed in the in the first part of the simulations. As can be
seen from Fig. 7 and Fig. 8, as the number of constraints
increases the convergence rate of the proposed algorithm
is improved whereas the performance of the MCMA-DD
degrades.
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Fig. 6. Residual ISI comparison for different constraints
for complex channel II.
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Fig. 7. MSE comparison for different constraints for com-
plex channel I affected by phase offset.

4. CONCLUSION

An improved and generalized version of a dual mode mod-
ified constant modulus algorithm (MCMA-DD) using the
idea of multiple constraints optimization techniques has been
successfully derived which is insensitive to small carrier
phase offsets. The principle of minimal disturbance has
been used in the derivations. Better performance is obtained
when compared to Lin’s algorithm and that of the MCMA-
DD when increasing the number of constraints at the ex-
pense of extra computational load.
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