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ABSTRACT
In this paper, we address the blind separation problem of binaural
mixed signals, and propose a novel blind separation method us-
ing Single-Input-Multiple-Output-model-based independent com-
ponent analysis (SIMO-ICA) with a self-generator (SG) for the ini-
tial filter. SIMO-ICA which has been proposed by the authors can
separate mixed signals, not into monaural source signals but into
SIMO-model-based signals from independent sources as they are
at the microphones. Although this attractive feature of SIMO-ICA
is beneficial to the binaural sound separation, SIMO-ICA has a se-
rious drawback in its high sensitivity to the initial settings of the
separation filter. In the proposed method, the SG functions as the
preprocessor of SIMO-ICA, and it can provide a valid initial filter
for SIMO-ICA. To evaluate its effectiveness, binaural sound separa-
tion experiments are carried out under a reverberant condition. The
experimental results reveal that the separation performance of the
proposed method is superior to those of conventional methods.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate
original source signals using only information of the mixed sig-
nals observed in each input channel. This technique is applicable
to high-quality hands-free telecommunication systems. In recent
works of BSS based on ICA [1], various methods have been pro-
posed to deal with a means of separation of acoustic sounds which
corresponds to the convolutive mixture case [2, 3]. However, the
conventional ICA-based BSS approaches are basically means of
extracting each of the independent sound sources as a monaural
signal, and consequently they have a serious drawback in that the
separated sounds cannot maintain information about the directivity,
localization, or spatial qualities of each sound source. This prevents
any BSS methods from being applied to binaural signal processing
[4] or high-fidelity sound reproduction systems [5].

In order to solve the above-mentioned fundamental problems,
several high-fidelity BSSs using the ICA-based algorithm have been
proposed, in which the convolutive mixtures of acoustic signals are
decomposed into the Single-Input Multiple-Output (SIMO) compo-
nents. Here the term ”SIMO” represents the specific transmission
system in which the input is a single source signal and the outputs
are its transmitted signals observed at multiple microphones. Mu-
rata et al. have proposed FDICA-PB [6]. In this algorithm, first,
the source signals are estimated as a monaural signal by FDICA,
and then projection-back processing projects the source signals esti-
mated by FDICA onto the observed signal’s space using the inverse
filter of the separation filter in FDICA. However, this algorithm has
some disadvantages [7] as follows. First, the invertibility of the
separation filter cannot be guaranteed. Thus, the inversion of the
separation filter often fails and yields harmful results. Secondly, the
circular convolution effect in FDICA is likely to cause the deterio-
ration of separation performance. To solve these problems, the au-
thors have proposed SIMO-model-based ICA (SIMO-ICA) [8]. The
SIMO-ICA consists of multiple time-domain ICA (TDICA) parts
and a fidelity controller. Since SIMO-ICA estimates SIMO compo-
nents of the observed signals directly, inversion problem does not

arise. Also, since SIMO-ICA is constructed of TDICA, it is free
from the circular convolution problem. However, the convergence
of SIMO-ICA is very slow, and the sensitivity to the initial settings
of the separation filter is very high.

In this paper, in order to improve the decomposition perfor-
mance, we propose a novel multi-step learning algorithm combining
FDICA-PB, DOA estimation, and SIMO-ICA. First, we perform
FDICA-PB to decompose the observed signals to some extent. Af-
ter the FDICA-PB, we estimate the DOAs of sources using outputs
of FDICA-PB. Then the proposed method resets the separation fil-
ter to the valid initial value and re-optimizes the filter using both
FDICA-PB and SIMO-ICA. In this procedure, a filter bank of pre-
viously measured head related transfer functions (HRTFs) for mul-
tiple DOAs is supplied to generate the valid initial filter. To evaluate
its effectiveness, decomposition experiments are carried out under
a reverberant condition. The experimental results reveal that the
decomposition performance of the proposed method is superior to
those of the conventional methods.

2. MIXING PROCESS

In this study, the number of microphones is K = 2 and the number
of multiple sound sources is L = 2 (see Fig. 1). In general, the
observed signals in which multiple source signals are mixed linearly
are expressed as

x(t) =
N−1

∑
n=0

a(n)s(t −n) = A(z)s(t) (1)

s(t) = [s1(t),s2(t)]
T is the source signal vector and x(t) =

[x1(t),x2(t)]
T is the observed signal vector. Also, a(n) = [akl(n)]kl

is the mixing filter matrix with the length of N, and A(z) =

[Akl(z)]kl = [∑N−1
n=0 akl(n)z−n]kl is the z-transform of a(n), where

z−1 is used as the unit-delay operator, i.e., z−n · x(t) = x(t −n), akl
is the impulse response between the k-th microphone and the l-th
sound source, and [X ]i j denotes the matrix which includes the ele-
ment X in the i-th row and the j-th column.

3. CONVENTIONAL DECOMPOSING ALGORITHMS:
SIMO-MODEL-BASED ICA (SIMO-ICA) [8]

For extracting the SIMO components in the mixed signals, we have
proposed blind decomposing framework for SIMO-model-based
acoustic signals using the extended TDICA algorithm, SIMO-ICA.
SIMO-ICA consists of the TDICA part and a fidelity controller, and
the TDICA runs in parallel under the fidelity control of the entire
separation system (see Fig. 1). The output signals of the TDICA
part in SIMO-ICA are defined by

y
(TD)

(t) = [y(TD)
k

(t)]k1 =
D−1

∑
n=0

w
(TD)

(n)x(t −n), (2)

where w(TD)(n) is the separation filter matrix of the TDICA. Re-
garding the fidelity controller, the following signal vector is calcu-
lated, in which all of the elements are to be mutually independent,
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Figure 1: Example of input and output relations in the conventional
SIMO-ICA under binaural recording.

y
(FC)

(t) = [y(FC)
k

(t)]k1 = x(t −
D
2

)− y
(TD)

(t). (3)

Hereafter, we regard y
(FC)

(t) as an output of a virtual ICA, and
define its virtual separation filter matrix as

w(FC)(n) = Iδ (n−
D
2

)−w(TD)(n), (4)

where δ (n) is a delta function, where δ (0) = 1 and δ (n) = 0 (n 6=
0). From (4), we can rewrite (3) as

y(FC)(t) =
D−1

∑
n=0

w(FC)(n)x(t −n). (5)

The reason why we use the word “virtual” here is that fidelity con-
troller does not have own separation filters unlike the TDICA, and
w

(FC)
(n) is subject to w

(TD)
(n). To explicitly show the meaning of

the fidelity controller, (3) is rewritten as

y
(TD)

(t)+ y
(FC)

(t)−x(t −D/2) = [0]k1. (6)

Equation (6) means a constraint to force the sum of the all of output
vectors y(TD)(t)+y(FC)(t) to be the sum of all of the SIMO compo-

nents [∑L
l=1 Akl(z)sl(t −D/2)]k1(= x(t −D/2)). Here the delay of

D/2 is used as to deal with nonminimum phase systems.
If the independent sound sources are separated by (2), and si-

multaneously the signals obtained by (3) are also mutually indepen-
dent, then the output signals converge on unique solutions,

y(TD)(t) = [ A11(z)s1(t −D/2), A22(z)s2(t −D/2) ]T , (7)

y
(FC)

(t) = [ A12(z)s2(t −D/2), A21(z)s1(t −D/2) ]T , (8)

where diag{X} and off-diag{X} are the operation for setting every
nondiagonal and diagonal elements of the matrix X to be zero. The
proof of theorem and more details are given in [8]. Equations (7)
and (8) represent necessary and sufficient SIMO components of all
source signals.

In order to obtain the above-mentioned solutions, the natural
gradient [3] of Kullback-Leibler divergence of (3) with respect to
w

(TD)
(n) should be added to the iterative learning rule of the sep-

aration filter in the TDICA. The iterative algorithm of the TDICA
part in SIMO-ICA is given as

w[ j+1]
(TD)

(n) = w[j ]
(TD)

(n)−α
D−1

∑
d=0

[

off-diag
{〈

ϕ
(

y[ j]
(TD)

(t)
)

y[ j]
(TD)

(t −n+d)T
〉

t

}

w[j ]
(TD)

(d)

−off-diag
{〈

ϕ
(

y[ j]
(FC)

(t)
)

y[ j]
(FC)

(t −n+ d)T
〉

t

}

(

Iδ (d −
D
2

)−w[ j]
(TD)

(d)

)]

, (9)

where α is the step-size parameter, the superscript [ j] is used to
express the value of the j-th step in the iterations, and 〈·〉t denotes
the time-averaging operator. In (9), the initial values of w

(TD)
(n)

and w(FC)(n) are arbitrary, but should be different each other.

4. PROPOSED ALGORITHM

4.1 Motivation and Strategy
The SIMO-ICA algorithm has the drawbacks of the arbitrariness
with respect to the initial value of the separation filter, and the
decomposing performances of this conventional method is deteri-
orated by the irrelevant initial value. Also, there is no theoretical
strategy for the selection of the valid initial value in the conventional
ICA framework. Thus, the development of the self-generation of
good initial filters is a problem demanding attention.

Meanwhile, the binaural transfer function is roughly divided
into the room transfer function and HRTF. Since the former depends
on the components of the direct sound, the reflection sound, and re-
verberation, it is generally unknown in the blind setup. However,
the latter depends on the only DOAs of sources and can be previ-
ously known because HRTF is an inherent feature in the recording
apparatus itself and can be approximately measured by using, e.g.,
a dummy head. Thus, HRTF is an important factor which solves the
blind decomposition problem of binaural mixed signals, and we can
use HRTF as the valid initial value of the separation filter matrix if
we can previously know the DOAs of sources.

These facts motivated us to combine FDICA-PB, DOA estima-
tion, and SIMO-ICA. First, we perform the FDICA-PB to decom-
pose the observed signals to some extent. Secondly, we estimate
the DOA of sources using the output of FDICA-PB blindly. Then,
the algorithm resets the separation filter to the valid initial value and
re-optimize the separation filter using both FDICA-PB and SIMO-
ICA. In this procedure, a filter bank of previously measured HRTFs
for multiple DOAs is supplied to generate the valid initial filter. The
important technology required here is an accurate DOA estimation
of sources. The SIMO-output algorithm has one advantage that the
output signals maintain the spatial qualities of each source. Thus,
the output signals of FDICA-PB, which is one of the SIMO-output
BSS, are synchronized with the observed signals. i.e., the time
alignment has been taken. We can detect the single talk segments
in the observed signals by using SIMO-output signals of FDICA-
PB, and estimate the DOAs of sources using the observed signals
corresponds to these segments.

4.2 Proposed Algorithm
The proposed algorithm is conducted by the following steps.
[Step 0: Early Initialization] Set DOAs of sources θ̂i to early
initial (arbitrary) values, θ̂initi.
[Step 1: HRTF Matrix Bank] The HRTF matrix bank consists
of multiple HRTF matrices. The single HRTF matrix for θ1 and θ2
is given as

H(θ1,θ2, f ) =

[

HL(θ1, f ) HL(θ2, f )
HR(θ1, f ) HR(θ2, f )

]

, (10)

where HL(θ , f ) (or HR(θ , f )) is the HRTF between the left (right)
ear and the source whose direction is θ . To construct the HRTF
matrix bank, we prepare the multiple HRTF matrices in advance by
changing θ1 and θ2. Using the HRTF matrix bank and the DOAs
of sources, we can automatically generate the valid initial value for
FDICA as follows:

W [0]
(FD)

( f ) = H−1(θ̂1, θ̂2, f ). (11)

Note that the initial value is not an optimal separation filter matrix
under a reverberant condition, but the separation filter matrix can be
finally optimized through ICA iterations.
[Step 2: FDICA-PB [6]] Murata et al. have proposed an FDICA-
PB method which can estimate the SIMO components of the ob-
served signals on the basis of the monaural outputs of FDICA. In
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Figure 2: Example of input and output relations in the proposed method.

this method, first, the separation filter matrix W(FD)( f ) in the fre-
quency domain is optimized to the separate source signals to obtain
the monaural signals. The separated signals Y(FD)( f ,t) in the time-
frequency domain are expressed as

Y
(FD)

( f ,t) = W
(FD)

( f )X( f ,t), (12)

where X( f ,t) is the observed signal vector which is calculated by
means of a frame-by-frame discrete Fourier transform (DFT). The
iterative learning algorithm is expressed as

W[i+1]
(FD)

( f ) = η
{

I−
〈

Φ(Y[i]
(FD)

( f ,t))Y[i]
(FD)

( f ,t)H
〉

t

}

W [i]
(FD)

( f )+W [i]
(FD)

( f ), (13)

where the initial value of W(FD)( f ) is given by Eq. (11). However,
the output signals of FDICA given by Eq. (12) are monaural signals
with respect to the sound sources, not SIMO-model-based signals.
Thus, using the following equations, we project the monaural sepa-
rated signals onto the microphone signal’s space.

w
(PB1)

(n) = IDFT
[

diag
{

W−1
(FD)

( f )
}

W
(FD)

( f )
]

, (14)

w(PB2)(n) = IDFT
[

off-diag
{

W−1
(FD)( f )

}

W(FD)( f )
]

, (15)

where IDFT[·] represents an inverse DFT with the time shift of the
D/2 samples. The separated signals of FDICA-PB in the time do-
main are expressed as

y(PBi)(t) =
D−1

∑
n=0

w(PBi)(n)x(t −n). (16)

y
(PB1)

(t) is a good approximation of the SIMO solution in Eq. (7)
without permutation (also, y

(PB2)
(t) corresponds to Eq. (8)).

[Step 3: Single Talk Detection] In order to detect the single talk
segments of the observed signals, we divide the observed signals
and output signals of FDICA-PB into multiple frames. Each frame
of these signals is expressed as

x(u,v) = x(u+(v− 1)×U ), (17)
y
(PBi)(u,v) = y

(PBi)(u+(v−1)×U ), (18)

where u is the time index in a frame, U is the number of samples
in a frame, v is the frame index. Each single talk segment Vi of the
observed signals is detected on the basis of the following criteria:

V1 =
{

v|Q(PB1)
1 (v) > T ;Q(PB2)

2 (v) > T ;

Q(PB1)
2 (v) < T ;Q(PB2)

1 (v) < T
}

, (19)

V2 =
{

v|Q(PB1)
1 (v) < T ;Q(PB2)

2 (v) < T ;

Q(PB1)
2 (v) > T ;Q(PB2)

1 (v) > T
}

, (20)

Q(PBi)
k

(v) = 10log10
∑U

u=1 |y
(PBi)
k

(u,v)|2

max
v

{

∑U
u=1 |y

(PBi)
k

(u,v)|2
} , (21)

where T is a threshold which is experimentally determined.
[Step 4: DOA Estimation Using Single Talk Segments] We can
obtain the DOAs θ̂i of sources by using the single talk segments.
The estimated angle θ̂i is given as

θ̂i = argmax
θ

{〈

∑
f

X1( f ,v)X2( f ,v)He−
j2π f d sinθ

c

〉

v∈Vi

}

, (22)

where 〈·〉v∈V is the frame-averaging operator which is composed of
elements v in single talk segments V . Thus, we can obtain the valid
initial value of the separation filter matrix using these estimated val-
ues, θ̂1 and θ̂2.
[Step 5: Re-Optimization] Using the DOAs of the sources esti-
mated with Eq. (22), we reset the separation filter to the valid initial
value, and re-optimize that in FDICA-PB (execute [Steps 1 and 2]
again).
[Step 6: SIMO-ICA] Optimize the separation filter matrices
w

(TD)
(n) and w

(FC)
(n) in the time domain, by using Eq. (9) to

enhance the target components further. The separation filter matri-
ces (14) and (15) are used as the initial values of the separation filter
matrix w(TD)(n) and w(FC)(n) in SIMO-ICA.

If the early initialization, HRTF matrix bank, FDICA-PB, and
SIMO-ICA ([Step 0–2, 6]) are executed without single talk detec-
tion, DOA estimation, nor re-optimization ([Step 3–5]), this algo-
rithm corresponds to the multistage SIMO-ICA (MS-SIMO-ICA)
algorithm [9] which has previously been proposed by one of the
authors.

5. EXPERIMENTS AND RESULTS

5.1 Conditions for Experiments
We carried out binaural-sound-separation experiments using source
signals which are convolved with impulse responses recorded with
a head and torso simulator (HATS) (Brüel & Kjær) in the exper-
imental room. The reverberation time in this room is 200 ms.
Two speech signals are assumed to arrive from different directions,
θ1 and θ2; θ1 = {−90◦,−75◦,−60◦,−45◦,−30◦,−15◦ , 0◦ } and
θ2 = {0◦,15◦,30◦,45◦,60◦,75◦,90◦}. The distance between HATS
and the sound source is 1.5 m. Two kinds of sentences, spoken by
two male and two female speakers, are used as the original speech
samples. Using these sentences, we obtain 12 combinations. The
sampling frequency is 8 kHz and the length of speech is limited to
3 seconds. Regarding the conventional ICA for comparison, we use
SIMO-ICA, FDICA-PB, and MS-SIMO-ICA. The length of w(n)
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Figure 3: Experimental results of SIMO-ICA, FDICA-PB, MS-SIMO-ICA, proposed self-generator for the initial filter, and proposed
SIMO-ICA with the self generator in reverberant condition.

in each method is 1024, and the initial values are inverse filters
of HRTFs whose directions of sources, θ̂init1 and θ̂init2, are −60◦

and 60◦. The step-size parameters α and η are 5.0 × 10−2 and
1.0× 10−6. SIMO-model accuracy (SA) [10] is used as an evalu-
ation score. The SA indicates the degree of similarity between the
outputs of SIMO-ICA and the real SIMO-model-based signals.

5.2 Results and Discussion
Figures 3 show the results of SA in the conventional SIMO-ICA,
FDICA-PB, MS-SIMO-ICA and the proposed method. These are
averaged scores of all speaker combinations. The following points
are revealed.
• When θ2 is smaller than 45◦, decomposing performances in the

proposed method are superior to those in the conventional meth-
ods regardless of θ1, except for the trivial case of θ1 = θ2 = 0.

• The performance of the proposed method can be remarkably
improved, especially when the angle between the speakers is
narrow, e.g., θ1 = 0◦ ∼ −45◦ and θ2 = 0◦ ∼ 30◦. Also, the
performances in the SG itself are superior to those of FDICA-
PB. This means that the SG can contribute to the improvement
of performances in the whole separation system.

• When θ2 is larger than 45◦, the decomposing performances of
the proposed method are almost the same as those of the con-
ventional methods.

Therefore, it can be asserted that the proposed algorithm for the
self-generation of initial values works effectively and increases the
SIMO-ICA’s separation performance.

6. CONCLUSION

In order to improve the decomposition performance, we newly
propose a method based on an alternation learning algorithm
combining FDICA, Single-Input-Multiple-Output-mode-based in-
dependent component analysis (SIMO-ICA), and the direction of
arrival (DOA) estimation. To evaluate its effectiveness, decomposi-
tion experiments are carried out under a reverberant condition. The
experimental results reveal that the decomposition performance of
the proposed method is superior to those of the conventional meth-
ods, especially when the angle between the sound sources is narrow.
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