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ABSTRACT

In some acoustic echo cancellation scenarios, such as an automatic
gain adjustment application, near-end noise may be continuously
present. In this case a double-talk detector cannot be applied and
the adaptive algorithm should behave in a robust way w.r.t. the dis-
turbing near-end signal. From linear estimation theory it is known
that the variance of the room impulse response estimate may be de-
creased by taking into account the near-end signal characteristics.
From the expression for the best linear unbiased estimate, we derive
a prediction error criterion from which the near-end signal model
and the room impulse response can be estimated concurrently. We
propose a new recursive identification algorithm for minimization
of the proposed prediction error criterion. The proposed algorithm
is in fact a variant of a prediction error identification algorithm that
was developed recently for adaptive feedback cancellation. Simula-
tion results indicate that indeed a fast converging echo cancellation
algorithm may be obtained with the proposed method, as compared
to ordinary RLS and NLMS adaptive algorithms.

1. INTRODUCTION

Acoustic echo cancellation (AEC) has been a popular research topic
in acoustic signal processing, motivated mainly by the increasing
demand for hands-free speech communication. A classical AEC
scenario is shown in Figure 1. A speech signal u(t) from the far-end
side is broadcasted in an acoustic enclosure (the ’room’) by means
of a loudspeaker. A microphone is present in the room for recording
a local signal v(t) (the ’near-end signal’) which is to be transmitted
back to the far-end side. An acoustic echo path exists between the
loudspeaker and the microphone such that the recorded microphone
signal y(t) = x(t)+v(t) contains an undesired echo component x(t)
in addition to the near-end signal component v(t). If the echo path
transfer function is modelled as a finite impulse response (FIR) filter
F(q, t) , f0(t)+ f1(t)q−1 + . . .+ fnF (t)q−nF , then the echo compo-
nent can be considered as a filtered version of the loudspeaker sig-
nal: x(t) = F(q, t)u(t). Here q denotes the time shift operator, e.g.
q−ku(t) = u(t−k). The main objective in AEC is to identify the un-
known room impulse response (RIR) F(q, t) and hence to subtract
an estimate of the echo component from the microphone signal. In
this way an echo-compensated signal d(t) = y(t)− F̂(q, t)u(t) is
sent to the far-end side, with F̂(q, t) an estimate of F(q, t).

Since F(q, t) may be time-varying (e.g. due to people moving
around the room), an adaptive algorithm is usually applied for the
estimation of the RIR. It is a well-known problem in AEC that the
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Figure 1: AEC scenario with AR modelling of the near-end signal.

convergence speed and hence the tracking capabilities of standard
adaptive algorithms (like recursive least squares (RLS) or normal-
ized least mean squares (NLMS)) may decrease severely when near-
end noise is present (’double-talk’ periods). A lot of effort has been
spent on the design of efficient double-talk detectors (DTD), which
are used to slow down or switch off the adaptation during double-
talk periods [1]. Nevertheless in some scenarios near-end noise will
be continuously present and the use of a DTD becomes futile. This
may be the case for example in an automatic gain adjustment appli-
cation.

In this paper we aim at developing a recursive identification al-
gorithm that allows for continuous adaptation of the RIR estimate,
yet behaves in a robust way in double-talk situations. From linear
estimation theory [2], we know that the best (i.e. minimum vari-
ance) linear unbiased estimator (BLUE) for an unknown system de-
pends on the characteristics of the noise acting upon the system. In
the AEC context it is the near-end signal which acts as a noise signal
to the RIR identification. Therefore we expect that by using knowl-
edge of the near-end signal characteristics, the convergence proper-
ties of the RIR identification algorithm can be improved. However
the near-end signal characteristics are typically unknown and may
be highly time-varying. Therefore they need to be estimated con-
currently with the unknown RIR.

The paper is organized as follows. We first review some re-
sults from linear estimation theory [2] in Section 2 to indicate how
the variance of the RIR estimate can be decreased. This leads to
the expression for the best linear unbiased estimate (BLUE), from
which we derive in Section 3 a prediction error criterion. This cri-
terion is a function of both the near-end signal model and the RIR.
Then in Section 4 a two-stage identification algorithm is described
that makes use of the bilinearity of the prediction error. The algo-
rithm comes in two flavours: a sliding window variant that follows
naturally from the prediction error criterion and hopping window
variant that exploits the quasistationary behaviour of audio signals
and is computationally more efficient. The hopping window variant
is equivalent to the PEM-AFROW algorithm proposed recently for
adaptive feedback cancellation [3] (PEM-AFROW stands for pre-
diction error method based adaptive filtering performing only row
operations). Finally in Section 5 both variants are compared by
means of computer simulations, both for a Gauss-Newton and a
stochastic gradient implementation.



2. BEST LINEAR UNBIASED ESTIMATE

Let us assume that a data record {u(k),y(k)}t
k=1 of microphone and

loudspeaker samples is available. Then the linear estimation prob-
lem at time t can be written as
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where f is the (nF + 1)× 1 parameter vector containing the coeffi-
cients of F(q, t) that are to be estimated.

Any linear estimate of parameter vector f can be written as a
linear function of the data vector y:

f̂ = ZT y. (1)

For this estimate to be unbiased, the t × (nF + 1) matrix Z should
be subjected to two constraints:

{

ZT U = InF +1 (a)
EZT v = 0(nF +1)×1 (b)

(2)

Since Z is typically a function of loudspeaker Hankel matrix U,
constraint (2(b)) can be reduced to EUT v = 0, which we assume
to be fulfilled. In AEC this comes down to assuming that no closed
signal loop is created due to an acoustic echo path in the far-end
room.

Minimizing the variance E (̂f−E f̂)(̂f−E f̂)T of the estimate (1)
under the unbiasedness constraint (2(a)) then yields the best linear
unbiased estimate (BLUE):

f̂BLUE = (UT R−1U)−1UT R−1y. (3)

R represents the near-end signal correlation matrix, defined by

R , EvvT . (4)

The BLUE covariance matrix is minimal among all linear unbiased
estimates and given by

cov(̂fBLUE) = (UT R−1U)−1.

Note that the BLUE in (3) cannot be calculated as such, because
the near-end signal correlation matrix R is usually unknown. Nev-
ertheless, from (3) we may derive a prediction error criterion from
which both the RIR and the near-end signal characteristics may be
estimated.

3. PREDICTION ERROR CRITERION

Let us first decompose the near-end signal correlation matrix R ap-
pearing in expression (3) for the BLUE. We therefore assume that
the near-end signal v(t) is generated as

v(t) = H(q, t)e(t) with Ee(t)e(t − k) = d (k)s 2
t .

The near-end excitation signal e(t) is a white noise signal with
a time-dependent variance s 2

t , and H(q, t) is a linear model with
time-dependent coefficients. Expression (4) may then be rewritten
as

R = EHeeT HT (5)

with e , [e(1) . . . e(t)]T , and

H = HT ,
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If the near-end signal model H(q,k), k = 1 . . .t, is considered to be
deterministic then the expectation operator in (5) can be shifted to
the inner product eeT :
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Hence the BLUE in (3) can be realized as

f̂BLUE = (UT H−T Λ−1H−1U)−1UT H−T Λ−1H−1y,

that is, by prefiltering and weighting the k-th row of U and y with
the inverse near-end signal model H−1(q,k) and the inverse near-
end excitation signal variance s −2

k respectively.
If we impose an autoregressive (AR) model structure on the

near-end signal, i.e.

H(q, t) =
1

A(q, t)
=

1
1+a1(t)q−1 + . . .+anA(t)q−nA

,

then the prefilters H−1(q,k) = A(q,k), k = 1 . . .t, turn out to be FIR
filters of order nA.

The BLUE can be seen to minimize at each time instant t the
prediction error criterion

VPE(t, f) =
1
2t

t

å
k=1

1

s 2
k

e 2(k, f), (6)

with the prediction error defined as

e (k, f) = A(q,k)[y(k)−F(q, t)u(k)].

In Section 4 we will derive a prediction error identification algo-
rithm which minimizes the prediction error criterion in (6) recur-
sively. However, in order to suit the application we have in mind,
two modifications are made to the criterion in (6). First of all, we
will allow the RIR F(q, t) to vary with time, which is physically
relevant as the acoustic environment may change. Therefore the pa-
rameter vector f(t) will be identified recursively and an exponential
forgetting factor l is included in the criterion. Secondly, up till now
we have considered A(q,k), k = 1 . . .t, as a known, deterministic
prefilter and s −2

k , k = 1 . . .t, as a given weight. In practice, A(q, t)
and s 2

t have to be estimated concurrently with F(q, t) at each time
instant t. The modified prediction error criterion then looks like

VPE(t, f(t),a(t), s 2
t ) =

1
2N

t

å
k=1

l t−k

s 2
k

(

A(q,k)[y(k)−F(q, t)u(k)]
)2

,

where N = 1/(1 − l ) denotes the effective window length and
a(t) , [a1(t) . . . anA(t)]T is the nA × 1 parameter vector contain-
ing the AR coefficients to be estimated at time t (note that a0 = 1 is
not included in a(t)).

4. PREDICTION ERROR IDENTIFICATION
ALGORITHM

The prediction error e (t, f(t),a(t)) = A(q, t)[y(t)− F(q, t)u(t)] is
nonlinear in the coefficients of f(t) and a(t). However, the predic-
tion error has the property that if a(t) is assumed to be known, it
is linear in f(t) and vice versa. The prediction error is said to be
bilinear in f(t) and a(t) [4]. It is useful to exploit this property in
the derivation of a prediction error identification algorithm, by per-
forming the identification in two stages. We assume that at time



instant t the estimates â(t − 1) and f̂(t − 1) are available from the
previous recursion step.

In the first stage of the algorithm a linear prediction is per-
formed on the echo-compensated signal d(t, f̂(t − 1)), calculated
using the previous estimate f̂(t − 1). The signal d(t, f̂(t − 1)) is
windowed with a rectangular sliding window of length M:
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The autocorrelation functions f dd(t ), t = 0 . . .nA, of d(t, f̂(t − 1))
are then estimated using the autocorrelation method:
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The near-end signal AR coefficients a(t) and the near-end excita-
tion signal variance s 2

t are then estimated from ˆf dd(t ), t = 0 . . .nA,
using the Levinson-Durbin recursion.

In the second stage of the identification algorithm, the micro-
phone and loudspeaker data needed for the recursive update of the
RIR estimate are prefiltered using the estimated coefficients â(t)
from the first stage:

yA(t) = [y(t) . . . y(t −nA)]
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The RIR estimate f̂(t − 1) can then be updated recursively, either
with the Gauss-Newton method:

f̂(t) = f̂(t −1)+
1
ˆs 2
t
Rf

−1(t)uA(t)e p(t),

Rf (t) = l Rf (t −1)+
1
ˆs 2
t
uA(t)uA

T (t), (7)

or with the stochastic gradient method:

f̂(t) = f̂(t −1)+ m
uA(t)e p(t)

uA
T (t)uA(t)+(nF +1) ˆs 2

t
(8)

where in both cases weighting is performed using the estimated
variance ˆs 2

t from the first stage, and the a priori prediction error
is calculated as

e p(t) = e (t, f̂(t −1), â(t)) = yA(t)−uA
T (t )̂f(t −1).

The complexity of the proposed algorithm as compared to an or-
dinary RLS or NLMS adaptive algorithm, may be reduced by taking
into account that most audio signals exhibit a quasi-stationary be-
haviour. In this respect, if the near-end signal is assumed to behave
stationary during time intervals with average length P, the first stage
of the algorithm may be performed only every P-th time instant, in-
stead of every time instant. In other words, the sliding window is
replaced by a hopping window with hop size P.

In the hopping window variant of the prediction error identifi-
cation algorithm, the first stage is only executed when t/P ∈Z. The
linear prediction is then performed on a rectangular data window

that ’looks ahead’ P− 1 samples of the echo-compensated signal
d(t, f̂(t −1)):
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The estimated coefficients â(t) and variance ˆs 2
t are then used in the

second stage of the algorithm during P recursive steps.
We conclude this section by noting that the hopping window

prediction error identification algorithm is equivalent to an adaptive
feedback cancellation algorithm proposed recently [3]. For con-
venience, we adopt the acronym PEM-AFROW, which stands for
prediction error method based adaptive filtering applying only row
operations (to the loudspeaker data matrix).

5. SIMULATION RESULTS

MATLAB simulations were performed to compare the convergence
properties of both variants of the PEM-AFROW algorithm de-
scribed in Section 4. A recursive least squares (RLS) and a nor-
malized least mean squares (NLMS) algorithm were implemented
as reference algorithms. At a sampling rate fs = 8kHz, F(q, t) was
a fixed, realistic room impulse response of length nF + 1 = 1000.
In one series of experiments the AR model order was set to nA = 12
which is a commonly used value in speech processing. In a sec-
ond series the AR model order was raised to nA = 55, a value high
enough to predict also the pitch of the near-end excitation signal
during voiced speech segments. The far-end signal u(t) was a 1,5s
male speech fragment and the near-end signal v(t) a 1,5s female
speech fragment. The near-end signal v(t) was scaled such that the
average echo-to-background ratio (EBR) was equal to 10dB:

EBR ,
å N

k=1 |x(k)|
2

å N
k=1 |v(k)|

2
= 10dB.

N = 12000 denotes the number of data points used for simulations
with the Gauss-Newton method. For the stochastic gradient simu-
lations, N = 480000 and the far-end and near-end speech fragments
were repeated 40 times. The exponential forgetting factor in (7) was
set to l = 0.9997 and the step size in (8) to m = 0.5. The length of
the rectangular window for linear prediction was set to M = 215 for
all experiments. For the hopping window variant, the hop size was
set to P = M −nA. The performance measure used for comparison
was the logarithmic normalized bias, defined as

d (t) = 20log10
‖f̂(t)− f‖

‖f‖
.

The convergence curves for the sliding window (SW) and hop-
ping window (HW) PEM-AFROW algorithm using the Gauss-
Newton method are shown in Figures 2 and 4 respectively. It is
clear that for both AR model orders the HW variant outperforms
the SW variant (compare the dashed curves), which may come as a
surprise. It turns out that keeping the AR coefficients fixed during
several consecutive recursion steps (as is the case in the HW vari-
ant) prevents the algorithm from converging to a local minimum of
the prediction error criterion. Moreover, even when the AR model
is identified on the true near-end signal (see the dotted curves), the
HW variant shows a faster convergence than the SW variant. How-
ever in this case the prediction error criterion has no local minima.
So it appears that the variance of the RIR estimate is lower in case
the AR coefficients are not estimated at each time instant.

It can be seen from the dotted curves that both PEM-AFROW
variants show a potential convergence improvement between 10dB
and 20dB compared to an ordinary RLS algorithm. When knowl-
edge of the true near-end signal is not used, the improvement of the
HW variant compared to the RLS algorithm is still 5dB to 10dB if
the AR model order is set high enough.

In Figures 3 and 5 the convergence curves for the stochastic
gradient implementation of both PEM-AFROW variants are shown.
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It is clear that, whereas an RLS algorithm still performs relatively
robust with respect to double-talk, the NLMS algorithm does not
converge at all in a continuous double-talk situation. The pro-
posed PEM-AFROW algorithm may outperform the NLMS algo-
rithm with as much as 25dB. Again the HW variant performs on
average somewhat better than the SW variant, but the performance
gap is not so large as with the Gauss-Newton method. We also note
that some of the PEM-AFROW convergence curves tend to diverge
after initial convergence. This is again due to convergence to a local
minimum of the prediction error criterion.

6. CONCLUSIONS AND FURTHER WORK

We have proposed a new way of coping with a continuous double-
talk situation in acoustic echo cancellation. Inspired by linear es-
timation theory, we have suggested to lower the variance of the
RIR estimate by taking into account the near-end signal character-
istics. These may be estimated concurrently with the RIR using a
two-stage prediction error identification algorithm, by using either
a sliding window or a hopping window for linear prediction of the
near-end signal. The hopping window variant outperforms the slid-
ing window variant and is computationally cheaper. The proposed
method has the potential of improving the echo canceller’s conver-
gence during double-talk with 10dB resp. 20dB as compared to an
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Figure 4: Convergence curves of hopping window PEM-AFROW
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ordinary RLS resp. NLMS algorithm.
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