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ABSTRACT
In this paper, we tackle the general linear instantaneous
model (possibly underdetermined and noisy) using the as-
sumption of sparsity of the sources on a given dictionary.
We model the sparsity of expansion coefficients with a Stu-
dent t prior. The conjugate-exponential characterisation of
the t distribution as an infinite mixture of scaled Gaussians
enables us to derive an efficient variational expectation max-
imisation algorithm (V-EM). The resulting deterministic al-
gorithm has superior properties in terms of computation time
and achieves a separation performance comparable in quality
to alternative methods based on Markov Chain Monte Carlo
(MCMC).

1. INTRODUCTION

In Blind Source Separation (BSS), the task is to estimate n
source signals from the sole observation of m linear mixtures.
In this paper, we consider linear instantaneous mixtures.

The (over)determined case (m ≥ n) for non-noisy linear
instantaneous mixtures has been widely studied and many
solutions now exist for this scenario. Conceptual and com-
putational difficulties arise when dealing with the underde-
termined case (m < n) and/or with noisy mixtures. The un-
derdetermined case in particular is very challenging because
contrary to (over)determined mixtures, estimating the mix-
ing system is not sufficient for reconstruction of the sources,
since for m < n the mixing matrix is not invertible. It ap-
pears that separation of underdetermined mixtures requires
important prior information on the sources to allow their
reconstruction. Such prior information is also helpful for re-
constructing the sources in noisy environments.

In this paper, we tackle the general linear instantaneous
model (possibly underdetermined, possibly noisy) using the
assumption of sparsity of the sources on a given dictionary.
This assumption means that only a few coefficients of the
decomposition of the sources on the basis are significantly
non-zero. The use of sparsity to handle the general linear
instantaneous model, has arisen in several papers in the areas
of learning [1, 2, 3] and source separation [4, 5, 6, 7, 8, 9,
10]. In the latter case the aim of the methods becomes the
estimation of the coefficients of the sources in the dictionary
and not the time series themselves.

In particular, in [9, 10], audio sources are decomposed on
a MDCT basis (a local cosine transform orthonormal basis)
and sparsity of the coefficients is modelled with a Student t
distribution. A Gibbs sampler (a standard Markov Chains
Monte Carlo simulation method) is derived to sample from
the posterior distribution of the parameters (the mixing ma-
trix, the sources coefficients, the additive noise variance and
the hyper-parameters of the Student t prior distributions).
Minimum Mean Square Error estimates of the coefficients of
the sources are then computed and time domain estimates
of the sources are reconstructed by applying inverse-MDCT.
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The main advantage of the MCMC approach is its gen-
erality and attractive theoretical properties. In earlier work
[9, 10], the MCMC based method for source separation is
found to be robust, for example one can estimate mixing
matrices with almost linearly dependent columns. Moreover,
the results were reproducible, i.e., independent of initialisa-
tion, the method could compute a perceptually reasonable
separation of the sources. However, the method comes at
the price of heavy computational burden which for certain
applications renders the method unpractical. To alleviate
this, we investigate in this paper an alternative approach for
computing the required integrals based on variational ap-
proximations [11, 12].

The paper is organised as follows: Section 2 introduces
notations and assumptions, in Section 3 we present briefly
the variational approach. Section 4 presents separation re-
sults with noisy underdetermined mixtures of audio signals
decomposed on a MDCT basis. Our approach is compared
with the MCMC approach of [9, 10]. Conclusions and per-
spectives are given in Section 5.

2. MODEL AND ASSUMPTIONS

2.1 Mo del and aim

We consider the following standard linear instantaneous
model, ∀t = 0, . . . , N − 1:

x t = A s t + n t (1)

where x t = [x1,t, . . . , xj,t, . . . , xm,t]
T is a vector of size m

containing the observations at each channel at time t. Simi-
larly, s t = [s1,t, . . . , sn,t]

T is a vector of size n containing the
sources, and n t is a noise term. Variables without time index
t denote entire sequences of samples, e.g, x = [ x 0, . . . , x N−1].

In BSS, the aim is to estimate the sources s and possibly
the mixing matrix A up to the standard BSS indetermina-

tion on gain and order, that is, compute ŝ and ˆA such that

ˆA = A D P ŝ = P T D −1 s (2)

where D is a diagonal matrix and P is a permutation matrix.

2.2 Assumptions

2.2.1 Time domain / Transform domain

We assume that we are given a basis on which the sources
adopt a sparse representation. Again, this means that only a
low proportion of coefficients of the decompositions are sig-
nificantly different from zero. Let Φ be a N × N invertible
matrix defining such a basis. We denote ỹ = y Φ the decom-
position of a time series y in Φ . The decomposition of the
observations is written:

˜x = x Φ = A s̃ + ˜n (3)

or, equivalently, ∀k = 1, . . . , N :

˜x k = A s̃ k + ˜n k (4)



Because Φ is a basis, Eq. (4) is strictly equivalent to Eq. (1),
which means that separation can be performed equivalently
either in the time domain or in the transform domain. In
the following, we work in the transform domain.

2.2.2 Mixing Matrix

We assume that the mixing matrix has a Gaussian prior
distribution.

p(A ) ∼ N (vec A ; vec ΩA, ΣA) (5)

The operator vec “reshapes” a matrix as a column vector
by concatenating its columns. This distribution gives the
expected orientations and scale of the mixing matrix.

2.2.3 Model of sparsity

We assume that the sequences of coefficients s̃i are inde-
pendently and identically distributed (i.i.d) with Student t
distribution t(αi, λi) defined as

p(s̃i,k|αi, λi) =
Γ(αi+1

2
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where index i = 1 . . . n runs over sources, k = 0 . . . N−1 runs
over transform coefficients, αi is the “degrees of freedom”
and λi is a scale parameter, tied across time slices. For
small αi, the Student t density gathers most of its probability
mass around zero and exhibits “fatter tails” than the normal
distribution. The Student t distribution has proved to be a
relevant model for sparsity in [13, 9, 10].

An important feature of the Student t distribution is that
it can be expressed as a Scale Mixture of Gaussians (SMoG)
[14], such that

p(s̃i,k|αi, λi) =

∫ +∞

0

N (s̃i,k; 0, v−1
i,k )G

(
vi,k;

αi

2
,

2

αi λ2
i

)
dvi,k

(7)
where G(x; γ, β) is the Gamma distribution, defined in Ap-
pendix A. Thus, using a t distribution is equivalent to in-
troducing the auxiliary random variable vi,k and assuming
that s̃i,k is conditionally Gaussian upon vi,k with

p(s̃i,k|vi,k) = N (s̃i,k; 0, v−1
i,k ) (8)

p(vi,k|αi, λi) = G
(

vi,k;
αi

2
,

2

αi λ2
i

)
(9)

This characterisation is important for the variational approx-
imation methods described later. In the following, we denote
v k ≡ [v1,k, . . . , vn,k]T and v ≡ [ v 0, . . . , v N−1]. We further
let Vk ≡ diag ( v k). The hyperparameters are denoted as
α = [α1, . . . , αn] and λ = [λ1, . . . , λn].

2.2.4 Mutual independence

We assume that the sequences of source coefficients are mu-
tually independent, such that p(s̃ ) =

∏ n
i=1 p(s̃i). As pointed

out in [5], the assumption of mutual independence of the co-
efficients in the transform domain can be considered more
realistic than the mutual independence of the sources in time
domain, which is the standard assumption of ICA methods.

2.2.5 Noise properties

We assume that ˜n is a i.i.d Gaussian noise with diagonal
precision (inverse covariance) matrix

R = diag (r1, . . . , rj , . . . rm)

rj ∼ G (rj ; aR,j , bR,j)

We point out that when an orthonormal basis is used (i.e,
Φ −1 = Φ T ), n is also a Gaussian i.i.d noise with precision
R.

3. VARIATIONAL EM

Given the model, we can formulate source separation as the
following Bayesian posterior inference problem:

P =
1

Zx
p(x | s̃ , A )p( s̃ |v )p(A )p(v |λ)p(R) (10)

≡ 1

Zx
φ( s̃ , R, A , v |λ) (11)

where Zx = p(x ) is the normalisation constant known as
the evidence. Once this posterior is calculated, the desired
quantities (e.g. sources) can be estimated from this posterior
by marginalization:

p( s̃ |x ) =

∫
dRd A dv P(s̃ , R, A , v |λ) (12)

Unfortunately, for the above model, the exact posterior is
intractable. Therefore, it is necessary to resort to numerical
approximation techniques such as MCMC [10].

One possible approximation method as an alternative to
MCMC, that leads usually to a faster optimisation proce-
dure is the structured mean field approach, also known as
variational Bayes [11, 12]. Variational Bayes boils down to
approximating the integrand P defined in (10) with a sim-
pler distribution Q such that the integral (12) in becomes
tractable. An intuitive interpretation of this technique is
minimising the KL divergence [15] with respect to (the pa-
rameters of) Q where

KL(Q||P) = 〈logQ〉Q − 〈logP〉Q (13)

Here, 〈f(x)〉p(x) ≡
∫

dxp(x)f(x) denotes the expectation of

f w.r.t. p. Using non-negativity of KL [15] we obtain a lower
bound on the evidence

log Zx ≥ 〈log φ(s̃ , R, A , v |λ)〉Q − 〈logQ〉Q (14)

It is clear that maximising this lower bound is equivalent to
finding the “nearest” Q to P in terms of KL. For our model,
we choose the approximating distribution Q of form

Q ≡ q(A )q(R)

N−1∏

k=0

q( s̃ k)

n∏
i=1

q(vi,k)

Although a closed form solution for Q still can not be found,
it can be easily shown, e.g. see [16], that each factor potential
Qα of the optimal approximating distribution should satisfy
the following fixed point equation

Qα ∝ exp
(
〈log φ(s̃ , R, A , v |λ)〉Q/Qα

)
(15)

Here, Q/Qα denotes the product of all factors excluding
Qα and α is a set valued index running over clusters, i.e.
α ∈ {{ A }, {vi,k}, {rj}, {s̃ k}} with i = 1 . . . n, j = 1 . . . m
and k = 0 . . . N − 1. Hence, the structured mean field ap-
proach leads to a set of fixed point equations that need to be
iterated leading to a variational EM algorithm. The actual
form of the Qα and update rules for the model are given at
the appendix.

3.1 Maximisation over the hyp erparameter λ

The hyper-parameters λ defines the scale of the latent source
coefficients and hence it is important to set these correctly for
the separation performance. It is possible to integrate out
λ by extending the approximating distribution Q. In this
study, however, we estimate λ simply by maximum likeli-
hood II, i.e., by maximising directly the lower bound defined
in (14) w.r.t. λ.



Original matrix

A =

[
1 1 1
−1 0.2679 3.7321

]

MCMC

ˆA =

[
1 1 1

−0.9849 0.2787 3.7213
(±0.0067) (±0.0025) (±0.0061)

]

Variational

ˆA =

[
1 1 1

−0.9765 0.2768 3.7213
(±0.0011) (±0.007) (±0.0027)

]

Table 1: Estimates of A

4. AUDIO RESULTS

We study a mixture of n = 3 audio sources (speech, pi-
ano, guitar) with m = 2 observations. The mixing matrix
is given in Table 1. The second row of A corresponds to
[tan ψ1 tan ψ2 tan ψ3] with ψ1 = −45 deg, ψ2 = 15 deg and
ψ3 = 75 deg. We set R = (0.03)2 I m, which corresponds to
20dB and 26dB noise on each observation. The signals are
sampled at 8kHz with length N = 65356 (≈ 8s). We used
a MDCT orthonormal basis [17] to decompose the observa-
tions, with a sine window of length 64ms (512 samples).

We applied both the variational method described above
and the Gibbs sampler described in [9, 10] to the MDCT co-
efficients of the observations. Both simulations were run with
the same prior on A ( vec ΩA = 0 and ΣA = 10 I nm) and
the same initialisations (∀i, αi = 1, λi = 0.1, R = (0.1)2 I m

and A drawn from the prior).

While the variational approach is deterministic, given
the initial Q distribution and an update order of factors, the
Gibbs sampler is stochastic and convergence relies on the
particular seed of the random number generator. Over sev-
eral runs of the sampler, convergence to the stationary dis-
tribution p( A , s̃ , R, v , α, λ|˜x ) was not observed before 4000
iterations. Adding 1000 iterations used to compute MMSE
estimates of the parameters of interest, the total 5000 itera-
tions take 15 hours a Mac G4 cadenced at 1.25 GHz (with a
MATLAB implementation).

In contrast, the variational method converges after 200
iterations, which requires 1.5 hours on the same computer.
Means of the marginals of Q were used as estimates of the
various parameters.

Estimates of the mixing matrix are reported in Table 1.
Sources are reconstructed by inverse MDCT of the estimated
source coefficients s̃ . The reconstructions are compared to
the original sources using the source separation evaluation
criteria described in [9]; basically, the SDR (Source to Dis-
tortion Ratio) provides an overall separation performance
criterion, the SIR (Source to Interferences Ratio) measures
the level of interferences from the other sources in each source
estimate, SNR (Source to Noise Ratio) measures the er-
ror due to the additive noise on the sensors and the SAR
(Source to Artifacts Ratio) measures the level of artifacts in
the source estimates. The performance criteria are reported
in Table 2. We point out that the performance criteria are
invariant to a change of basis, so that figures can be com-
puted either on the time sequences ( ŝ compared to s ) or the

MDCT coefficients (ˆ̃s compared to s̃ ). The estimated sources
can be listened to at http://www-sigproc.eng.cam.ac.uk/
~cf269/eusipco05/sound_files.html, which is perhaps the
best way to assess the audio quality of the results.

ŝ1

SDR SIR SAR SNR
MCMC 6.3 15.0 7.3 20.4

Variational 6.4 15.4 7.3 21.7
ŝ2

SDR SIR SAR SNR
MCMC 5.1 14.3 5.8 27.8

Variational 5.2 15.0 5.8 24.8
ŝ3

SDR SIR SAR SNR
MCMC 16.6 23.7 17.8 29.8

Variational 16.6 25.3 17.5 29.7

Table 2: Performance criteria of estimated sources with both
methods.

5. CONCLUSIONS

Tables 1 and 2 show that the separation quality is identical
with both methods, for a computation time roughly 10 times
shorter with the variational approach.

However, in some simulations carried out, especially with
mixing matrices where two columns are almost linearly de-
pendent, the variational method consistently underestimated
the number of sources. When two columns of A point at
close directions (e.g, ψ1 close to ψ2), the variational approach
tended to merge the corresponding sources into a single one,
setting a column of A to zero, whilst MCMC was able to con-
sistently locate the three components. The reason for this
might be that the actual posterior landscape is multimodal,
with each mode corresponding to a “possible explanation of
data”. Our over-smooth variational approximation is miss-
ing an important local maxima and thus favours a solution
that corresponds to a simpler explanation. This point is
however to be investigated by further simulation studies. In-
terestingly, when we clamp the matrix close to its true value,
the sources are estimated quickly and reliably by variational
EM.

These first conclusions of our work suggest that a hybrid
method incorporating both MCMC and variational steps
may be a viable approach for fast and robust source separa-
tion. In the future, we plan to design such an optimisation
schema, that, while keeping the robustness of the MCMC
approach in estimating the mixing matrix, makes use of vari-
ational steps for the estimation of latent sources for fast con-
vergence.

A. STANDARD DISTRIBUTIONS

Multivariate Gaussian and Gamma distributions are defined
as

N (x |µ, Σ ) = |2π Σ |− 1
2 exp−1

2
( x − µ)T Σ −1 (x − µ)

G(x; a, b) ≡ 1

Γ(a)
b−axa−1 exp(−x

b
)I[0,+∞)(x)

The sufficient statistics have the form

〈x〉N = µ
〈
xxT

〉
N

= Σ + µµT

〈x〉G = ab 〈log x〉G = digamma (a) + log(b)

Here, the digamma function defined as digamma (x) ≡
d log Γ(x)/dx.



B. VARIATIONAL APPROXIMATION

The generative model is given as

s̃ k|Vk ∼ N (s̃ k; 0, V −1
k )

xk| s̃ k, A , R ∼ N (xk; A s̃ k, R−1)

Vk ∼ G(Vk; a Q, b Q) ≡
∏

i

G(vk,i; aQ,i, bQ,i)

R ∼ G(R; a R, b R) ≡
∏

j

G(rj ; aR,j , bR,j)

vec A ∼ N (vec A ; vec Ωp, Ψp)

where we have defined the matrix Vk ≡ diag v k. Note that
we tie the parameters of p(Vk) across k. The variational
approximation has the form

Q ≡ q(R)q(A )

K∏

k=1

q(s̃ k)q(Vk)

The update rules for the variational factors are given as in
the following:

• Hidden state

q( s̃ k) = N (s̃ k; mk, Sk)

Sk =
(〈

A T R A
〉

+ 〈Vk〉
) −1

mk = Sk 〈A 〉T 〈R〉xk

• Mixing matrix1

q( A ) = N ( vec A ; vec Ξ, Φ)

Φ =

(( ∑

k

〈
s̃ k s̃

T
k

〉
⊗ 〈R〉

)
+ Ψ−1

p

) −1

vec Ξ = Φ( vec (〈R〉
〈 ∑

k

xk s̃
T
k

〉
) + Ψ−1

p vec Ωp)

• Hidden state precision, i = 1 . . . n

q(Vk) = G(Vk; ¯a V,k, ¯b V,k) ≡
∏

i

G(vk,i; āV,k,i, b̄V,k,i)

āV,k,i = aV,i +
1

2

b̄V,k,i =
bV,i〈

s̃2
k,i

〉
bV,i/2 + 1

• Observation noise precision, j = 1 . . . m

q(R) = G(R; ¯a R, ¯b R) ≡
∏

j

G(rj ; āR,j , b̄R,j)

z k = diag
(〈

A s̃ k s̃
T
k A T

〉
− 2xk 〈s̃ k〉T 〈A 〉T + xkxT

k

)

āR,j = aR,j +
K

2

b̄R,j =
bR,j( ∑

k zj,k

)
bR,j/2 + 1

The algorithm proceeds by updating the parameters of
these factors iteratively. When a factor Qα is updated, the
expectations depending upon parameters of Qα also change,
hence factors of Q/Qα, that depend upon these expectations
need to be updated e.t.c.

1The operator ⊗ denotes the Kronecker product.
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