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ABSTRACT 

 
In recent years, sub-band speech recognition has been 
found useful in robust speech recognition, especially for 
speech signals contaminated by band-limited noise. In sub-
band speech recognition, full band speech is divided into 
several frequency sub-bands and then sub-band feature 
vectors or their generated likelihoods by corresponding 
sub-band recognizers are combined to give the result of 
recognition task. In this paper, we use continuous density 
hidden Markov model (CDHMM) as recognizer and 
propose a weighting method based on HMM entropy for 
likelihood combination. We also use an HMM adaptation 
method, named weighted projection measure, to improve 
HMM entropy and its performance in noisy environments. 
The experimental results indicate that the improved HMM 
entropy outperforms conventional weighting methods for 
likelihood combination. In addition, results show that in 
SNR value of 0 dB, proposed method decreases word error 
rate of full-band system about 20%. 
 
 

1. INTRODUCTION 
 
The problem of robustness in ASR systems against 
contamination with noise is considered as a mismatch 
between the training and testing conditions. Common 
approaches used to reduce the mismatch can be divided into 
three main categories: data-driven methods, model-based 
techniques and sub-band approach. Data-driven methods 
try to compensate noise effects on speech or speech 
features, where model-based approaches modify acoustic 
models instead of speech signal or its features. Sub-band 
technique, viewed as a new architecture for ASR systems, 
can be usually applied to noises which cause partial 
corruption of signal frequency spectrum. 
 Data-driven methods usually are divided into two main 
categories: speech signal enhancement approaches and 
feature compensation techniques. The enhancement 
methods process the noisy speech signal directly and try to 
estimate clean speech signal from noisy speech signal and 
reduce the mismatch in this way. Spectral subtraction [5] 
and wavelet thresholding [10] are two instances of speech 
enhancement schemes. Feature compensation techniques 
usually decrease the mismatch in two ways. In the first 
methods, a transformation is applied to features to remove 
noise effects such as, cepstral mean normalization (CMN) 

[5] and RASTA PLP [13]. In the second method, new 
features are extracted to become more robust to noise  
effects such as, phase autocorrelation features (PAC) [2].  
Model-based methods modify environment statistical 
model so that it adapts to new properties of environment, 
for example, noisy conditions. This adaptation has the 
advantage that no decisions or hypotheses about speech are 
necessary. Some examples of such approaches are: parallel 
model combination (PMC) [9] and maximum likelihood 
linear regression (MLLR) [11]. 
In the sub-band approach, the speech signal is first divided 
into several frequency bands. Then in each sub-band, a 
feature vector is extracted. After further processing, the 
sub-band feature vectors can be treated in two ways: they 
are concatenated and used to replace the original feature 
(feature combination), or each of them is processed by a 
separate sub-band recognizer which is trained on respective 
sub-bands. In this case, each sub-band recognizer generates 
a probability estimate. After this, a statistical formalism is 
used to recombine the respective probability estimates. This 
approach is named probability combination or model 
combination [3] [4].   
In this paper, we propose a combination of sub-band 
technique and a model-based method called weighted 
projection measure (WPM) [12]. In this way, we first use a 
new weighting method for probability combination based 
on HMM entropy. In next step, we use WPM to improve 
performance of this proposed weighting method. 
The remainder of this paper is organized as follows. Section 
2 discusses the likelihood combination and defines the 
HMM entropy for probability combination. In Section 3, 
the weighted projection measure is introduced. Section 4 
includes our experiments and results. Finally, our 
conclusions are given in Section 5.  

 
 

2-LIKELIHOOD COMBINATION IN 
 SUB-BAND SPEECH RECOGNITION 

 
As mentioned above, in model-combination approach, each 
sub-band region is treated as a distinct source of 
information. Each sub-band recognizer generates 
probability estimates which must be combined at some 
level of time segmentation such as phone, syllable or word 
level. The right choice in how to combine the probability 
estimates from the different sub-band recognizers 
essentially influences the performance of the combined 



system.  Depending on the nature of sub-band recognizer, 
whether they are likelihood-based such as HMM, or 
posterior based like HMM/ANN hybrid classifier, the 
statistical formalism changes [3]. This statistical formalism 
can be in a linear or nonlinear form.  
In the case of HMM recognizers, likelihoods, returned by 
HMMs can be linearly recombined using sub-band 
weighting based on the following equation [4]: 
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where S represents the score of utterance x with model M, 
P(x | M, b) is the likelihood returned by the HMM   
corresponding to the model M in sub-band b and finally, B 
is the number of sub-bands. 
One problem in sub-band weighting approach is the 
estimation of weighting factors Mb ,α  in order to give more 
weight to recognizers corresponding to more reliable sub-
bands. The most common weighting factors are SNR 
estimation in each sub-band [8] and inverse conditional 
entropy of each sub-band [7].  In this work, we propose a 
weighting factor based on HMM entropy which is defined 
in following.  

 
2-1. HMM ENTROPY FOR LIKELIHOOD 
COMBINATION  
The distribution of likelihoods at the output of the HMM 
contains information on the reliability of input observation 
vector to HMM. If an HMM shows a very high likelihood 
and all other HMMs have a low likelihood, this indicates a 
reliable input observation vector. On the contrary, when all 
HMMs have almost the equal likelihood, the input 
observation vector is very unreliable. This information can 
be obtained by computing the entropy of estimated 
likelihood for input observation vector to all HMMs. The 
entropy can be computed as follows: 
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where: 
O: observation vector in frame or word level  
P (O|Mi): the generated likelihood for observation vector O 
by i-th HMM 
K: the number of all HMMs 
H (O): the entropy of observation vector O for all HMMs 
 
Because the above entropy indicates the reliability of an 
observation vector, we can find a relationship between the 
entropy and weighting factor Mb ,α  in equation (1). The 
lower entropy value signifies the reliability of observation, 
whereas the higher entropy value is a sign of unreliable 
observation vector. Due to this property, we can use the 
inverse value of the entropy as weighting factor Mb ,α . So, 
if we rewrite equation (1) as follows:   
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we can compute Mb ,α  like this: 
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3. WEIGHTED PROJECTION MEASURE 

 
The theory behind WPM is based on the observation of 
Mansour and Juang [14] that the norms of cepstral vectors 
are reduced by additive white noise. From using this, a 
computationally efficient measure based on the projection 
operation was formulated which significantly improved 
DTW speech recognition performance in presence of noise. 
Carlson and Clements expanded the projection measure to 
be used in a CDHMM-based recognition system [12]. They 
incorporated a scale factor into the CDHMM state 
distribution or equivalently into the Gaussian likelihood 
score to compensate for the reduction in vector norm. They 
used MFCC features instead of cepstral coefficients. The 
measure was found to improve significantly speaker 
dependent isolated word recognition rate in presence of 
several noise types, including white, jittering white and 
broadband colored noise [12]. Their compensated 
expression for Gaussian distribution can be more accurately 
represented as follows:  
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where 
 tc  : observation vector for frame t 
 n:  dimensionality of observation vector 
 ij,µ : mean vector of j-th Gaussian mixture in state i 

 ijC , : covariance matrix of j-th Gaussian mixture in state i 
 tij ,,λ : scale factor for frame t in j-th Gaussian mixture in 
state i 

)(, tij cb : generated probability by j-th Gaussian mixture for 
observing vector tc  in state i 
In the Viterbi algorithm, an appropriate matching measure 
between the observation and Gaussian mixture distribution 
function can be found from the log likelihood of above 
Gaussian function. This results in the following: 
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From the orthogonality principle, the optimal tij ,,λ  value is 
the projection of tc  onto ij,µ  weighted in the space 
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With this value of tij ,,λ , the above log likelihood becomes 
what is called as WPM.  



3-1. WPM AND HMM ENTROPY 
When we apply WPM to CDHMM for noisy environments, 
the estimated likelihood by corresponding HMM for a 
noisy observation vector is maximized. Consequently, 
significant improvement in recognition rate is obtained    
[12]. This improvement is the logical result of increasing 
disparity between likelihood of different HMMs for noisy 
observation vector. An increase in difference between 
likelihoods of HMMs, leads to lower entropy value for 
observation vector in equation (2). Thus, we can say that 
applying WPM to CDHMM, decreases the HMM entropy 
defined by equation (2). This means an improvement in 
HMM entropy and HMM performance in noisy 
environments.  Hence, when we apply WPM to HMM 
corresponding to b-th sub-band, we have a decrease in Hb 
value in equation (3). This means that we have a more 
reliable recognition result in b-th sub-band. Thus, the 
weighting factor Mb ,α  for this sub-band must increase. 
This can be supported by equation (4).  
 

4. EXPERIMENTS AND RESULTS 
  
We report our results on TIMIT database for isolated word 
recognition. Two sentences from speakers in two dialect 
regions were selected and were segmented into words. In 
this way, we have 21 words spoken by 151 speakers 
including 49 females and 102 males. Our training set 
contains 2349 utterances spoken by 114 speakers. The 
testing set includes 777 utterances spoken by 37 speakers. 
Our recognizer is CDHMM with 6 states and 8 Gaussian 
mixtures per state which is trained on clean speech. Two 
types of additive noises were used: pink and factory noises 
selected from NOISEX92 database. We added two noises 
to both training and testing sets. We chose 4 sub-bands as 
in [4] [6] and used the discrete wavelet transform for 
speech decomposition into 4 sub-bands with dyadic 
bandwidths:  0-1 kHz, 1-2 kHz, 2-4 kHz, and 4-8 kHz. This 
selection is based on our pervious work results [1]. We 
used 5-th order Daubechies wavelet as wavelet 
decomposition filter because of its smoothness and compact 
support [1].  In feature extraction phase, we divided the 24 
mel filter between 4 sub-bands. In this manner, we applied 
6 Mel filters for each sub-band and then extracted 3 MFCC 
and 3 delta-MFCC features from each sub-band. Hence, the 
length of each feature vector is 6. In the full-band system, 
feature vector contains 12 MFCC and 12 delta-MFCC 
features and so its length is 24. 
Fig. 1 shows results of likelihood combination (LC) and the 
effect of improving HMM entropy on it, in presence of 
factory noise. The results are reported on SNR values of 10 
and 0 dB, for 3216 utterances of testing and training noisy 
database, in terms of word error rates (WER). In Fig. 1, the 
word "full" shows the full-band system WER. The word 
"Cms" indicates the conventional cepstral mean subtraction 
method for noise robustness. The three abbreviations 
"Equal", "SNR" and "HMM-E" show three different 
weighting methods based on equal weights, sub-band signal 
to no ise ratio and HMM entropy, respectively. As Fig. 1 

shows, in SNR value of 10 dB, all three weighting methods 
in likelihood combination perform better than full-band 
system. In this case, SNR weighting method has the highest 
performance among them.  When we apply WPM to LC in 
order to improve HMM entropy, the performances of all 
methods improve, especially in case of HMM-E weighting 
method. In SNR value of 10 dB, the improvements in 
performance are almost 9.4%, 5% and 13% for equal, SNR 
and HMM-E weighting methods, respectively. These 
results show that by improving HMM entropy, HMM-E has 
the highest performance in case of SNR value of 10 dB. 
When SNR value is equal to 0 dB, all three weighting 
methods perform a little higher than the full-band system. 
But, by applying WPM to LC, their performances increase 
significantly. In this case, decreases in word error rates are 
21.2%, 3.2% and 20% for equal, SNR and HMM-E 
weighting method, respectively. It can be seen that in SNR 
value of 0 dB, the same performance is achieved for HMM-
E and equal weighting methods by improving HMM 
entropy which both are higher than SNR weighting method. 
In addition, HMM-E has a better performance than 
conventional cepstral mean subtraction method. 
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(b)  SNR = 0 dB 
 

Fig. 1. Word error rates in presence of factory noise 
for SNR values of  10 and 0 dB 

 
Fig. 2 illustrates the evaluation results of using likelihood 
combination and WPM in presence of pink noise. As Fig. 2 
displays, in SNR value of 10 dB, higher performance is 
achieved, when we use likelihood combination. In this case, 



SNR weighting method has the lowest word error rate. 
Instead, when we apply WPM to LC, the highest 
performance belongs to HMM-E weighting method and the 
LC performance also improves significantly for all other 
weighting methods. This can be seen from the word error 
rates decrease. These decreases are almost 14.3%, 6.5% and 
19.3% for equal, SNR and HMM-E weighting methods, 
respectively.  In SNR value of 0 dB, the LC performance is 
higher than the full-band system. This performance 
improves when we apply WPM to LC. The improvements 
for equal, SNR and HMM-E weighting methods are almost 
21.8%, 5.3%, 19.9%, respectively. In this case, both HMM-
E and equal weighting methods have almost the same 
performance which is higher than SNR weighting method 
performance. Furthermore, HMM-E outperforms 
conventional cepstral mean subtraction. 
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Fig. 2. Word error rates in presence of Pink noise 
for SNR values of  10 and 0 dB 

 
5. CONCLUSION 

 
In this paper, we proposed a weighting method based on 

HMM entropy for likelihood recombination in robust sub-
band speech recognition. That is a measure for reliability of 
observation vector and as a result, HMM classifier. Then, 
we used an HMM adaptation method named WPM to 
improve HMM entropy and therefore, our proposed 
weighting method. Our results show that using WPM 

improves performance of likelihood combination and 
especially, likelihood combination based on HMM entropy. 
As future work, we plan to define other new weighting 
methods for likelihood combination based on both the 
HMM entropy and the sub-band reliability. In addition, we 
want to use other HMM adaptation methods and support 
vector machines (SVM) to improve HMM entropy and as a 
consequence, likelihood combination performance. 
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