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ABSTRACT
While diffusion tensor imaging (DTI) provides a powerful
tool to reconstruct neural pathways in vivo, the standard dif-
fusion tensor model is limited to resolve a single fiber di-
rection within each voxel. To overcome this difficulty, high
angular resolution diffusion imaging (HARDI) has recently
been proposed to investigate intravoxel fiber heterogeneity.
In this paper we propose a novel method for mixture model
decomposition of the HARDI signal based on Bayesian infer-
ence and trans-dimensional Markov Chain simulation. The
method is applied to both synthetic and real data.

1. INTRODUCTION

Magnetic resonance diffusion tensor imaging (DTI) assumes
that the water diffusion within each voxel follows a Gaussian
distribution. But in voxels containing multiple fiber tracts
with different orientations this assumption no longer holds
and diffusion tends to be multimodal. This is a significant
limitation for DTI since at the typical image resolutions used
in diffusion MRI, the volume of cerebral white matter con-
taining such intravoxel orientational heterogeneity may be
considerable [5]. Q-space imaging(QSI), or diffusion spec-
trum imaging (DSI) [10], and high angular resolution diffu-
sion imaging (HARDI) [2, 9] are two methods which have
recently been proposed to resolve intravoxel multiple fiber
directions. In comparison, HARDI is less demanding than
DSI in terms of acquisition times and magnetic field gradi-
ent, and is, therefore, more widely used.

The application of HARDI requires a reconstruction
scheme which can either be model-based [2, 4, 6, 9] or
model-free [11]. Here, we propose a novel mixture model
based inversion method which makes use of Bayesian esti-
mation and trans-dimensional Markov chain simulation [3,
7]. Due to experimental uncertainties present in diffusion
MR imaging, Bayesian approach is believed to have poten-
tial advantages in diffusion MRI data processing [1].

2. METHODS

2.1 Mixture models for multiple-fiber structure

DTI measures the molecular diffusion of water along neural
pathways. For a voxel containing a single fiber, the diffusion
signal is given by [8]

S = S0e−bvT Dv (1)

where S0 is the signal intensity without the diffusion weight-
ing, v is an unit vector defining the applied gradient direc-
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tion, and D is the diffusion tensor which can be seen as syn-
onymous with a “fiber”. Assuming the orientation of the fiber
aligns with (q , f ) as shown in Fig.1, the diffusion tensor D
can be parameterized as:

D = RT DL R (2)

where

DL =

[ l 1 0 0
0 l 2 0
0 0 l 3

]
(3)

and (l 1, l 2, l 3) are the principle diffusivities. R is the ro-
tation matrix which relates the generally unknown principle
diffusion axes to the laboratory coordinate system.

R =

[
cos q cos f cos q sin f −sin q
−sin f cos f 0

sin q cos f sin q sin f cos q

]
(4)

Figure 1: The fiber orientation in the laboratory coordinate
system.

To model the underlying structure of a voxel with multiple
fibers, we assume no diffusion exchange between fibers, i.e.,
the contribution of each fiber to the overall diffusion is in-
dependent and additive. This leads naturally to the diffusion
signal from a voxel containing k fibers being a mixture of
Eq.(1) [2, 9]

S = S0

k

å
j=1

w j exp(−bvT D jv) (5)

where D j is a tensor corresponding to a fiber, as defined
above in Eq.(2)-(4). w j is the fraction of signal contributed

by the corresponding fiber
(

å k
j=1 w j = 1

)
.



2.2 Bayesian estimation for mixture models

Given the observed diffusion weighted signal S at a voxel,
our goal is to estimate the number of fibers k contained,
the fiber weights w =(w 1, . . . , w k) and the fiber parame-
ters Θ = (Q 1, . . . , Q k), Q j =

(
q j, f j, l 1, j, l 2, j, l 3, j,S0, s 2

)
,

j = 1, . . . ,k. In a Bayesian framework, the posterior density
is written in general as

p(k,w,Θ|S) µ p(k)p(w|k)p(Θ|k) p(S|k,w,Θ) (6)

By assuming i.i.d. Gaussian noise
(
0, s 2

)
for the diffusion

MRI acquisition process, the likelihood

p(S|k,w,Θ) = N
(
S|S, s 2) (7)

where S is the expected diffusion signal calculated through
Eq.(5). For HARDI we usually measure the diffusion sig-
nal S along many directions. Letting n be the number of
measurements made, we then have the observed signal S =
(S1, . . . ,Sn) and the likelihood in Eq.(7) is extended to in-
clude all Si

p(S|k,w,Θ) =
n

Õ
i=1

p(Si|k,w,Θ) (8)

For priors in Eq.(6) we choose k to follow a uniform distri-
bution U (1,kmax), kmax is the pre-specified maximum num-
ber of fibers, and w to be a symmetric Dirichlet D(1, . . . ,1).
Priors on fiber parameters Θ are taken as non-informative,
namely q 1:k ∼ U(0, p ), f 1:k ∼ U (−p , p ), S0 ∼ U(0, ¥ ), l
and s −2 ∼ Gamma(a , b ) to ensure positive constraints.

2.3 Reversible jump sampling

Since the number of fibers is unknown, it is desirable to carry
out a trans-dimensional Markov chain simulation for solving
Eq.(6), in which the dimension of the parameter space is al-
lowed to vary. We adopt a reversible jump MCMC [3, 7] ap-
proach in our work. Our algorithm includes two move types:

• The fixed-k moves. Proposed with probability
pF(k), it consists of Metropolis-Hasting proposals for
each

(
S0, w 1:k, l 1:k, q 1:k, f 1:k, s 2

)
with independent ac-

cept/reject decisions. The proposal is a multiplicative
lognormal random walk on the w j’s, l j’s and s 2’s, and
an additive normal random walk on the S0, q j’s and f j’s.

• Birth or death moves. First a random choice is made be-
tween birth and death, using the predefined probability
pB (k) and pD (k). For a birth move, a new component
is proposed, with its weight and parameters drawn from
a joint density J ((w k+1, Q k+1) |k,k +1,(w,Θ)). Specif-
ically, w is drawn using w k+1 ∼ Be(1,k), Be being the
Beta distribution, and parameters Q k+1 drawn from the
prior introduced in the previous section. To make all
weights sum to 1, the existing weights are rescaled by
w j = w j (1− w k+1), j = 1, . . . ,k. For a death move, each
existing component is selected with equal probability, the
selected component is deleted, and the remaining weights
are rescaled to sum to 1. The moves are accepted with
probability min(r,1) for birth and min

(
r−1,1

)
for death,

where the ration r is given by

r =
p(k +1,(w∗,Θ∗)∪(w k+1, Q k+1) |S)

p(k,w,Θ|S)

× pD (k +1)/(k +1)
pB (k)J ((w k+1, Q k+1) |k,k +1,(w,Θ))

×
∣∣∣∣∣
¶

(
gk,k+1((w,Θ)∪(w k+1, Q k+1))

)

¶ ((w,Θ)∪(w k+1, Q k+1))

∣∣∣∣∣ (9)

where the last term is a Jacobian arising from the
change of variable, (w∗,Θ∗)∪(w k+1, Q k+1) =
gk,k+1((w,Θ)∪(w k+1, Q k+1)) and dim((w,Θ)) +
dim((w k+1, Q k+1)) = dim((w∗,Θ∗)∪(w k+1, Q k+1)),
which do the dimension matching to ensure the detailed
balance condition of the Markov chain. Through
the carefully chosen proposal distribution, the above
equation can be written in a simple form

r =
p(S|k +1,(w,Θ)∪(w k+1, Q k+1)) pD (k +1)

p(S|k,w,Θ) pB (k)
(10)

2.4 Data acquisition

Diffusion weighted images were acquired along 60 direc-
tions equally spaced on a sphere by tessellations of an icosa-
hedron, with a b-value≈ 1000mm2/s, along with 4 images
acquired at b≈ 0. The imaging parameters were: slice thick-
ness = 2.3mm, FOV = 190×190mm2, matrix size 100×100.
Images were reconstructed on a 128× 128 matrix giving a
final resolution of 1.5× 1.5× 2.3mm3, TR = 2.2s, TE =
105ms. Imaging was implemented on a 3.0-T clinical whole
body magnet (Bruker Medspec s300; Bruker Medical) using
a echo-planar imaging technique. The local research ethics
committee approved the study.

3. RESULTS

3.1 Verification of the method

The estimation procedure was tested on simulated HARDI
data. The test is conducted as follows. First, 60-direction
measurements of HARDI with given parameters (true param-
eters) is generated by a simulator. These measurements serve
as the data for the estimation procedure. Then the estimated
parameters (posterior mean) are compared to the true param-
eters. The mean minimum angle difference (MMAD) [9] was
calculated as the comparison index

MMAD =
1
k

k

å
j=1

min
(
cos−1 (ê j ·ei)

)
for i = 1, . . . ,k

(11)
where k is the number of fibers, ê j is the estimated orienta-
tion of the jth fiber, and ei is the true fiber orientation. Fig-
ure 2 shows the estimation results for two fiber mixtures, the
example taken from [9]. Both fiber have the same principle
diffusivities (l 1, l 2, l 3) = (1.7,0.3,0.3)m m2/ms, and is sep-
arated by an increasing angle from 0◦ to 90◦. The estimation
procedure was run 20 times for each angular separation. The
attenuated SNR level was set at 25 assuming Gaussian noise.
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Figure 2: Accuracy (mean ± standard deviation) of 2-fiber
mixture analysis.

3.2 Application on human brain data

The first region chosen to do Bayesian mixture analysis is
shown in Figure 3 (left) bounded by a white box. It is an
area where the mediolaterial corpus callosum intersects with
superoinferior corona radiata [12]. The inferred introvoxel
structure is visualized using color-coded and anisotropy
scaled cylinders (right). Each cylinder represents a fiber pop-
ulation within the voxel. For comparison, the DTI map of
the same area is also shown in the middle. It can be seen that
Bayesian mixture analysis reveals the fiber crossing between
the corona radiata (blue) and radiation of the corpus callosum
(red) while DTI only shows an averaging of fibers within the
voxel.

Another region of interest (Figure 4, right) has more com-
plex neural architecture [11]. The area selected covers the
partial neural circuit between the prefrontal cortex and the
mediodorsal nucleus of the thalamus, containing both inter-
section and dispersion of fibers. Starting from the internal
capsule, the fiber has an anteroposterior orientation. It inter-
sects the mediolateral-directed genu of the corpus callosum,
and diverges into the inferior frontal gyrus, the middle frontal
gyrus and the superior frontal gyrus. Bayesian analysis of the
mixture model reveals the fiber crossing with the corpus cal-
losum. But due to artefacts in the middle, the fiber dispersion
area was only partially imaged and estimation for both sin-
gle tensor DTI and mixtures affected. It shows only partially
that fibers diverge laterally into the inferior frontal gyrus, and
shows some signs of fiber dispersion into middle and supe-
rior frontal gyrus. Again, the DTI single tensor model fails
to identify voxels containing multiple fiber populations.

4. DISCUSSION

In [1] a Bayesian approach was proposed to estimate param-
eters defining local fiber direction, but the estimation process
was limited to the case where only a single fiber orientation
is modeled in each voxel. We extend [1] by using a novel
Bayesian analysis to include multiple fibers within a voxel,
which enables us to set up a fully probabilistic framework to
infer anatomical connectivity in the human brain.
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Figure 3: Left: Transverse view of the fractional anisotropy image showing the ROI. The region includes the crossing between
the coronal radiator and radiation of the corpus callosum. Middle: Single tensor reconstruction of DTI. The tensor at each
voxel represents a fiber population and is visualized with a cylinder oriented in the direction of the first eigenvector, scaled by
the fractional anisotropy, and color coded according to the RGB sphere shown at left, with red indicating mediolateral, green
anteroposterior, and blue superoinferior. Right: Bayesian mixture analysis of HARDI signal rendered by multi-cylinder. The
orientations of the cylinders are determined by posterior mean estimation of (q , f ) and color cloded using the same scheme.
Fiber crossing can be seen at intersection of the corpus callosum with the coronal radiator.

Figure 4: Left: Transverse view of the fractional anisotropy image showing the ROI bounded in the white box. Middle and
right: Rendering of the DTI map and the recovered multi-fiber field using the same methods as described in Figure 3. The
Bayesian analysis of mixture model infers the crossing between callosal genu fibers and the fibers passing through the internal
capsule; and the intersection of fibers from the external capsule with the uncinate fascicle. Also, the dispersion of fibers into
the frontal gyri can be partially seen.
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