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ABSTRACT

A cluster-based lossless compression algorithm for hyper-
spectral images is presented. Clustering is carried out on the
original data according to the vectors spectra, and it is used to
set up multiple contexts for predictive lossless coding. Low-
order prediction is performed using adaptive Linear Least
Squares (LLS) estimation which exploits the additional in-
formation provided by clustering. Prediction errors are then
entropy-coded using an adaptive arithmetic coder also driven
by data clusters.

The proposed scheme is used to losslessly code a set of
AVIRIS hyperspectral images. Comparisons with the JPEG-
LS, JPEG-2000 and the clustered DPCM coding algorithms
are given.

1. INTRODUCTION

In recent years, hyperspectral images have grown to hun-
dreds of spectral bands leading a considerable increase of
the memory required for data storage. In order to address
this problem, many near-lossless compression schemes have
been proposed in the literature [1, 2, 3]. However, different
practical applications need all the data to be available with-
out any coding distortion, and thus the interest in efficient
lossless coding algorithms is steadily increasing. From a sta-
tistical point of view, hyperspectral data present both strong
spatial and spectral correlations which standard coding algo-
rithms do not exploit efficiently.

In this paper, we present a lossless coding approach based
both on data clustering and low-order spectral prediction.
Clusters are obtained from a statistical partition of the data
vectors according to a mixture of Gaussian densities whose
parameters are computed by solving a Maximum Likelihood
(ML) problem. Clusters are the contexts used both in predic-
tion and entropy coding. In fact, inside each cluster, Linear
Least Squares estimates (LLSE) are used to adaptively com-
pute the optimal prediction coefficients for each pixel. Fi-
nally, prediction errors are entropy-coded using a first-order
arithmetic coder also based on the contexts provided by clus-
ters.

The paper is organized as follows. Section 2 gives a brief
review of the coding algorithms used for comparison. Sec-
tion 3 introduces our clustering approach. Section 4 presents
the LLSE cluster-based prediction. Finally, Sections 5 and 6
report the results obtained by coding a set of AVIRIS hyper-
spectral images, and conclusions.

2. PREVIOUS CODING SCHEMES

Three algorithms were taken into account for comparisons,
namely JPEG-LS, JPEG-2000 and the clustered DPCM.

Both JPEG-LS and JPEG-2000 are popular coding stan-
dards for still images, and were adapted to code also hyper-
spectral data. For their popularity they have been taken into
account as reference algorithms. The clustered DPCM, pro-
posed by Mielikainen et al. [4], is an algorithm specifically
designed for hyperspectral data lossless coding which out-
performs other algorithms given in the literature [5, 6, 7, 8].

The JPEG-LS [9] is the JPEG lossless coding standard. It
is based on the prediction algorithm provided by the Median
Edge Detector (MED) followed by a context-based Golomb-
Rice coder. Compression efficiency is possibly improved us-
ing Run-Length coding whenever four adjacent pixels have
the same value.

The JPEG-2000 [10] is the well-known compression al-
gorithm designed for lossy to lossless data coding of still im-
ages. A Discrete Wavelet Transform (DWT) is applied to
the data, and the resulting coefficients are coded using a bi-
nary bit-plane arithmetic coder (MQ-coder), which leads to
a highly scalable coded bitstream.

Finally, the last algorithm taken into account is the clus-
tered DPCM which is a very efficient predictive coder ex-
ploiting both clustering and spectral correlation. In this
scheme, data are clustered according to vector spectra using
the Linde-Buzo-Gray (LBG)[11] vector quantizer. The set of
labels generated by the LBG algorithm defines the clusters on
which spectral prediction is performed. Labels are entropy-
coded and added to the output bitstream as side information.
Linear prediction is computed by minimizing the expected
value of the squared error inside each cluster. The optimal
coefficients of each predictor are uniformly quantized to a
16-bit representation, and outputted to the bitstream. Finally,
residual values resulting from the prediction are entropy-
coded by an adaptive range coder [12] which uses clusters
as contexts.

3. PROPOSED CLUSTERING APPROACH

The proposed algorithm is based on data segmentation which
is used to set up context-based prediction and entropy-
coding. The statistical segmentation is provided by the SEM
algorithm [13] which is a robust stochastic implementation
of the Expectation-Maximization (EM) algorithm [14].

Let X = {x j| j = 1, . . . ,M} be the set of observed hy-
perspectral vectors. Each K-dimensional vector x j ∈ X is
supposed to be drawn by the unknown probability density
function (pdf) f (x). Let C be the number of clusters being
used in the segmentation. The statistical estimate of f (x) is
performed by introducing a set of C multivariate Gaussian
pdfs f (x|θc) of mean µc and covariance Σc. Each Gaussian
has parameters θc = {µc,Σc}, and the corresponding mix-



ture parametric model

f (x|Θ) =
C

∑
c=1

αc f (x|θc) (1)

is completely specified by the set of parameters Θ = {αc,θc :
c = 1, . . . ,C}, where the weighting coefficients αc are all
non-negative and sum up to one.

Let Ω be the space of parameters. Under the assumption
of independent and identically distributed (i.i.d.) vectors, the
model’s optimal parameters Θ

∗ are estimated by maximizing
the log-likelihood function

L(Θ|X ) = ln
M

∏
j=1

f (x j |Θ) =
M

∑
j=1

ln
C

∑
c=1

αc f (x j |θc) (2)

with respect to the observed data X over all the admissible
choices of Θ ∈ Ω

Θ
∗ = arg max

Θ∈Ω

L(Θ|X ) . (3)

Given the Maximum-Likelihood (ML) problem (3) some
simplifications are in order to make the estimation mathemat-
ically tractable. In the SEM algorithm this is achieved con-
sidering the observed dataset X as incomplete, and assuming
the existence of an unobserved dataset W which specifies
from which Gaussian density each vector has been drawn.
The compound set Z = {X ,W } is then referred as the com-
plete dataset.

Starting from an initial choice of parameters Θ
(0), the

ML problem (3) is solved iteratively applying, firstly, the
Expectation step which computes the expected value of the
complete-data likelihood L(Θ|Z ) given the current parame-

ters Θ
(i) and the observed data X

Q(Θ,Θ(i)) = E
[

L(Θ|X ,W )|X ,Θ(i)
]

, (4)

and, secondly, the Maximization step which gives the new

parameters Θ
(i+1) by maximizing the functional in (4)

Θ
(i+1) = arg max

Θ∈Ω

Q(Θ,Θ(i)) . (5)

Robustness to pathological cases is finally achieved by im-
plementing a stochastic assignment of vectors to clusters us-
ing random drawings at each iteration. The sequence of

parameters Θ
(i) gives non-decreasing complete-data like-

lihoods L(Θ(i)|Z ) and, consequently, also non-decreasing

incomplete-data likelihoods L(Θ(i)|X ) (refer to [13] for fur-
ther details).

In practice, clustering is not computed directly in the
original full-dimensional data space. In order to reduce the
computational cost, discrete cosine (DC) transform and ba-
sis restriction are used to pack most of the data variance into
a small number of components on which the segmentation
algorithm is effectively carried out.

Clusters provided by segmentation are represented by a
set of labels C = {` j|1 ≤ ` j ≤ C, j = 1, . . . ,M} specifying
which cluster the corresponding vector belongs to. Vectors
having the same label are in the same cluster, and each clus-
ter defines a unique context for both vector prediction and
entropy-coding of prediction errors.

The labels in C are coded using a (JPEG-LS)-like coder
and added to the output bitstream as side information.

4. CLUSTER-BASED PREDICTION

In linear predictive coding, the correlation between the cur-
rent sample and its causal neighborhood is used to code only
the unpredictable part of the data.

In hyperspectral imagery, both spatial and spectral corre-
lations can be used for this purpose. Moreover, data cluster-
ing may improve prediction by grouping vectors according
to their spectral behavior, and providing an effective way to
set up different contexts for coding different regions of the
image.

Focusing only on the spectral prediction, we may concern
that some bands are better predictable than others. Thus, the
use of low-order linear predictors may be enhanced by using
a band reordering algorithm [15]. Mielikainen et al. over-

come this issue using high-order predictors1. However, this
solution yields a lot of side information affecting the achie-
veable compression ratio, especially when a high number of
clusters is used. On the other hand, the prediction error is or-
thogonal to the vector space generated from prediction vec-
tors. Consequently, high-order predictors usually perform
better than low-order ones.

The objective of the proposed algorithm is to define a
cluster-based predictive scheme achieving good compression
ratios using, however, low-order and strongly-adaptive pre-
dictors which exploit both spectral and spatial correlation.

For each component, spectral prediction coefficients are
computed by setting up an LLS estimate whose defining
equations are varied band by band according to a distance
measure between the current vector and vectors belonging to
its causal neighborhood within the same cluster.

Since prediction can only be performed from data already
coded (i.e. already available to the decoder), the first band
of the hyperspectral data is encoded using only the spatial
prediction given by the MED algorithm.

Consider the observed dataset X = {x j| j = 1, . . . ,M}
and the current vector x j = [x j,1, . . . ,x j,K ]T whose k-th com-
ponent x j,k is being predicted. Without loss of generality, we
may assume that vectors indexes have been reordered such
that all the k-th components of xi, with i < j, have already
been predicted.

Let ` j ∈ C be the cluster label associated to x j , and con-
sider the N-dimensional vector (N < K) formed by the com-
ponents of x j that are used to predict x j,k

x
(k)
j = [x j,(k−1), . . . ,x j,(k−N)]

T . (6)

The linear prediction of x j,k is given by the inner product

x̂ j,k =< b
(k)
j ,x

(k)
j >=

N

∑
i=1

b
(k)
j,i x j,(k−i) (7)

where b
(k)
j = [b

(k)
j,1, . . . ,b

(k)
j,N ]T is the N-dimensional vector of

prediction coefficients. The prediction error is

e j,k = x j,k − x̂ j,k . (8)

In order to estimate the optimal coefficients b
(k)
j , let us con-

sider the set I j of the indexes whose corresponding vectors

1In their work, a 16-th order predictor was the optimal trade-off between
prediction efficiency and side information overhead.



have already been predicted and belong to the same cluster
of x j

I j =
{

i < j | i, j ∈ {1, . . . ,M} ∧ `i = ` j

}

. (9)

Given a subset J
(k)
j = {m1, . . . ,mq} ⊆ I j of vectors in the

causal neighborhood of x j , the LLS estimate of b
(k)
j is the

solution of the linear system X
(k)
j b

(k)
j = c

(k)
j given by









x
(k)
m1

T

...

x
(k)
mq

T









b
(k)
j =







xm1,k

...
xmq,k






. (10)

To explain the system in (10), consider that the indexes
m1, . . . ,mq identify q causal vectors of x j within the same

cluster. Thus, the (q×N)-matrix X
(k)
j is formed by the com-

ponents of these vectors in the preceding N bands. Finally,

c
(k)
j is a q-dimensional vector consisting of the known values

in the k-th band.
Choosing q > N yields an overdetermined linear system.

If the columns of X
(k)
j are linearly independent, then the ma-

trix X
(k)
j

T
X

(k)
j is invertible, and the LLS solution is

b
(k)
j =

(

X
(k)T

j X
(k)
j

)−1

X
(k)
j

T
c

(k)
j . (11)

This is known as the pseudo-inverse solution of the sys-

tem [16]. If the X
(k)
j

T
X

(k)
j matrix has not full rank, then we

may proceed in the same way by adding a fixed small value
to its main diagonal. It should be also noted that the pre-

diction coefficients b
(k)
j are estimated from vectors already

coded, and thus available to the decoder.

Vectors indexes in J
(k)
j used in the LLS equations cor-

respond to a suitable set of vectors belonging to the causal
neighborhood of the current vector x j . Initially, when no in-
formation about the spatial correlation is available, this set is
simply defined from the clusters labels by taking the nearest
q vectors to x j according to the Manhattan distance. Once

that x j,k has been predicted and coded, the new set J
(k+1)
j for

the prediction of x j,k+1 is determined by taking the q vectors

in I j at minimum distance from x
(k+1)
j . This distance can be

the usual L2 norm. However, the L1 norm can be successfully
used to speed up the search.

Since I j represents the entire causal history of the vector
x j (inside its cluster), the search for minimum-distance vec-
tors is computationally demanding. From a practical point
of view, this search can be limited to a small subset, slightly

grater than J
(k)
j , containing only vectors spatially closer to

x j.
The underlying idea in reordering the prediction indexes

is to adaptively adjust the set of vectors that will be used to
build the LLSE system. This is accomplished by estimating
the spatial correlation between vectors within each cluster,
and leads to good performance also when low-order predic-
tors are used.

For the sake of simplicity, the above derivations do not
take into account band reordering. As mentioned before,
band reordering is a bijective function which maps the bands
order as it is collected by hyperspectral sensors to a new or-
der with the purpose of reducing the average prediction error
distortion [17]. Clusters can be also used in this kind of oper-
ation. Independent ordering functions (one for each cluster)
may be defined according to the prediction distortion which
occurs within each cluster.

The prediction error e j,k defined in (8) is the unpre-
dictable information that has to be stored for the lossless re-
construction of the data. However, lossless coding requires
its integer approximation

ê j,k = x j,k −bx̂ j,kc . (12)

Once that the hypercube has been predicted, the last op-
eration is to entropy-code the prediction errors which usu-
ally have lower entropy than the original data. To imple-
ment entropy-coding, a cluster-based first-order arithmetic
coder [18] is implemented. However, when the original
bands reach better compression than predicted one, the pre-
diction errors are simply discarded and the original data is
encoded.

5. RESULTS

The proposed coding algorithm was tested on a set
of hyperspectral images collected by the Airborne Visi-

ble/InfraRed Imaging Spectrometer2 (AVIRIS). The electro-
magnetic spectrum radiance emitted by the earth’s surface
is measured in 224 narrow-length frequency bands (each 10
nm wide), starting from 0.42 µm to 2.45 µm. The AVIRIS
sensors collect data continuously from an altitude of about
20 km above the sea level. Samples are successively divided
into hypercubes of 614×512 spectral vectors, each of which
represents a 20 × 20 m2 square region to the ground. Fi-
nally, each radiance component is numerically represented
and stored as a 16-bit number. Test images used in the sim-
ulations were Jasper Ridge, Moffett Field, Lunar Lake and
Cuprite.

Simulations were conducted using different number of
clusters in the parametric model (1). In clustered DPCM,
prediction coefficients are stored in the bitstream. Thus, once
that the maximum compression ratio has been reached for a
certain number of clusters, varying that number results in a
rapid growth of the side information size. In the proposed
scheme prediction coefficients are not stored in the bitstream,
and consequently the influence of the number of clusters is
not so critical as in the clustered DPCM, and similar com-
pression ratios are achieved for different number of clusters.

The results reported in Table 1 are a comparison between
JPEG-LS, JPEG-2000, clustered DPCM and the proposed al-
gorithm using 10 clusters and a 4-th order predictor. As said
before, JPEG-LS and JPEG-2000 do not exploit the spectral
correlation between bands. Consequently, they achieve an
average compression ratio of only 2.03:1 and 1.87:1, respec-
tively. Note that JPEG-LS outperforms JPEG-2000 because
it is specifically designed for lossless compression, while
JPEG-2000 is not optimized for this kind of coding.

For what concerns the clustered DPCM algorithm, the
proposed coding scheme works slightly better reaching an

2Free data are available at the AVIRIS website http://aviris.jpl.nasa.gov



Image Sets JPEG-LS JPEG-2000 Clustered DPCM Proposed

Moffet Field 1.99 1.82 3.46 3.45
Jasper Field 1.91 1.78 3.46 3.46
Lunar Lake 2.14 1.96 3.37 3.38
Cuprite 2.09 1.91 3.42 3.43

Average 2.033 1.868 3.428 3.430

Table 1: compression ratios for the AVIRIS test images.

average compression ratio of 3.430:1 instead of 3.428:1 cor-
responding to an average rate of about 4.66 bits per compo-
nent (bpc). In practice, the two algorihms achieve the same
compression capabilities.

Clustered DPCM and the proposed scheme are similar in
the way they use clustering to improve performance. They
reach good compression ratios (about 3.4:1) and have about
the same coding efficiency. The interesting fact is that the
proposed 4-th order LLS adaptive predictor yields the same
efficiency used in the 16-th order predictor of the clustered
DPCM, demonstrating the effectiveness of the proposed pre-
diction.

For what concerns band reordering, the algorithm pro-
posed in [15] was implemented and tested. In practice, it
gave us only small improvements of the coding performance.
This is due to the strong adaptivity of the LLSE predictor
which successfully exploits both spatial and spectral correla-
tion. Usually, simpler predictors only works on trivial rela-
tionships between adjacent bands and components, therefore
the straightforward solutions in those cases are either to use
band reordering or to increase the predictor order.

6. CONCLUSIONS

A cluster-based predictive coding algorithm for hyperspec-
tral data lossless compression has been presented. Highly-
adaptive LLSE predictions exploiting spatial and spectral
correlation permitted to achieve high compression ratios
(similar to those of clustered DPCM) using very-low order
predictors.
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