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ABSTRACT 

 
Frequency warping using short-time Laguerre transform 
(STLT) has been employed here as an effective tool in 
increasing the efficiency of the sparse component analysis 
(SCA) for underdetermined blind source separation systems. 
An attempt has been made to maximise a measure of 
sparseness. There are three major advantages for such an 
application; 1. The psycho-acoustic features such as 
fundamental harmonics are well separated in frequency 
domain, 2. The permutation problem as the most 
troublesome effect in frequency domain blind source 
separation (FDBSS), is mitigated, and 3. In SCA the 
sparseness measured based on l0-norm, increases and hence 
the performance of the SCA methods is improved.  
 
 

1.  INTRODUCTION 
 
Frequency warping is an interesting processing effect in 
which the frequency axis is remapped to obtain a signal with 
desired characteristics [1]. Laguerre transform is effectively 
used in warping (for either expansion or compression) of the 
signals. Frequency warping has been traditionally employed 
in signal compression, speaker normalization [2], sound 
morphing, detuning the partials, pitch shifting, as an 
approach to wavelet transform [3], and many other 
applications. During the warping process, depending on the 
sign of the warping parameter the frequency components of 
the signals are shifted to the left and right resulting in either 
compression or expansion of the spectrum respectively. In 
BSS it is very favourable to expand the frequency axis to 
increase the sparseness of the signal in frequency domain. In 
the case of musical signal separation very often the number 
of sources is larger than the number of sensors (i.e. the 
system is underdetermined). Moreover, these signals are 
sparser in frequency domain than in the time domain. In 
such cases the warping process can be adapted to increase 
the sparseness of the signals in frequency domain.  
         As for the other BSS methods, there are ambiguities 
due to the change in sign, scale, and order of the output 
independent components. Techniques exist to overcome 
these problems, but no robust method has, as yet, been 
found to overcome the permutation problem. Most of the 
methods reported in the literature rely on estimation of the 
direction of arrival (DOA) and exploitation of 
psychoacoustic properties of the human auditory system [5] 
[6]. As a result of frequency warping these features are 

enhanced and the frequency components are better 
discriminated. In the following sections we explain how to 
set the warping parameter in order to have the maximum 
sparseness in frequency domain. An overall model for the 
system has been given in Figure 1.  
 

 
Fig. 1 The overall proposed warping-FDBSS system 

 
 

2.  SHORT-TIME FREQUENCY WARPING 
 
For a block-based first-order Laguerre transform (LT) the 
transfer function is denoted by: 
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where -1<b<1 is the LT parameter. If b < 0 the effect of 
warping will be compressing the signal in time while b > 0 
expands the signal. In a real time processing, however, the 
STLT is computed by Laguerre transforming windowed 
frames of the signal x(n). Practically, an iterative, non-
causal scheme to compute the Laguerre coefficients is given 
by the diagram in Figure 2. In this diagram the second block 
is defined as: 
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This block is used to change the basis of the input signal. 
The third block is a dispersed delay line for which Q(z) 
defined in (1) is tapped sequentially [3]. 
 

 
Fig. 2 Structure for computing the LT of the mixtures 

 
The estimated sources are unwarped at the end using an 
inverse LT or more practically following the block diagram 
in Figure 3 [3]. Here the first block is an inverse operation 
to the third block in Figure 2. In the following sections we 



examine the effect of warping on separation of the 
underdetermined mixtures. 
 

 
Fig. 3 Unwarping the separated components 

 
In many applications such as sound or scene effects, a time 
varying frequency warping is more adequate. In such cases  
by defining  
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the warped mixture signal after recurrent r is  
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where )(zQr  is the z-transform of )(kqr . Similarly the 
independent components can be unwarped by calculating  
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where 
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where )(zrΨ  is the z-transform of )(krψ . However, the 
energy preservation property of the orthogonal warping is 
no longer valid. 

 
 
3.  MITIGATING THE PERMUTATION PROBLEM 
 
Frequency-domain BSS (FD-BSS) algorithms are sensitive 
to the permutation of the separated frequency bin signals. 
The scaling ambiguity can cause the scaling of every 
frequency band to be different resulting in spectral 
deformation of the original sources. As suggested in [7], the 
scaling problem can be remedied by forcing the determinant 
of the separating matrices to unity. This prevents alteration 
of the spectral envelope, while preserving the separation. 

But permutation indeterminacy remains as an open problem. 
In regions where there is no severe spectral deformation and 
the number of sources is low, the uniformity of the spectrum 
may be exploited in readjusting the weights of the 
separating matrix to alleviate the problem. However, a 
systematic approach to the problem is required where the 
number of sources is high. The existing methods for solving 
the problem are: (1) constraints on the filter models in the 
frequency domain [7] [1]; (2) exploiting the continuity of 
the spectra of the recovered signals [8]; (3) co-modulation 
of different frequency bins [9]; (4) using a time-frequency 
source model [7]; (5) using a beamforming view and 
measurement of the direction of arrival (DOA) [5], and 
finally a recent scheme for realigning the permuted 
components based on a coupled HMM [6]. For separation of 
musical signals the beamforming methods are suitable since 
the position of the players and the microphones are often 
fixed within a reasonable distance from the instruments. 
However, the DOAs for different sources are not well 
separated in angular positions for when the environment is 
highly reverberant i.e. the mixing filter is long. The angle of 
arrival, θ, is proportional to the phase difference between 
the mixtures, ϕ, i.e. for two mixtures for each time point k, 
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and d is the microphone spacing.  
 

4.  SCA AND WARPING 
 
The most important property of warping is an increase in 
sparseness of the mixtures (in frequency domain) when the 
number of sources is larger than the number of sensors. This 
is extremely important in the separation of music originated 
from different (or even similar) instruments. In this case, the 
standard ICA cannot be utilised since the mixing matrix is 
not invertible. In these cases transforming the signal from 
time to frequency domain by itself increases the sparseness 
[11]. Assuming no major overlap between (more than two 
of) the source signals in a real room recordings the mixtures 
are convolutive and the mixed signals are represented 
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the mixing medium. The problem here is to determine 
belong to which signal each sample in the time-frequency 
domain is. In order to do that the phase difference between 
each two observed signals, ϕ(ω,k), is measured as 
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(DOA) θ (ω,k) is then proportional to the phase difference 
between the mixtures, ϕ, i.e. for two mixtures for each 

discrete-time point k, 
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the speed of sound and d is the microphone spacing. After 
frequency warping, ϕ(ω,k) will change to 
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are the warped mixtures. Finally the peaks are classified 
using an unsupervised method such as k-mean algorithm. 
This is done by plotting θ (ω,k) and using a binary mask 
defined as  
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where ∆ is the range parameter and γθ̂  is the estimated 

DOA for source γ. Each signal is then extracted by 
calculating 2,1),,(),(),( == jkXkMkX j

c
j ωωω γ . For 

smaller value of ∆ better separation but a higher distortion 
results. When ∆ increases, the musical noise reduces but the 
separation performance deteriorates. After one source is 
separated the same process may be continued to extract the 
second source or an ICA-based BSS can be applied for 
solving the two-source-two-microphone problem [10]. 
However, often there are overlaps between the classes or the 
peaks are very close to each other. Therefore a binary 
decision making process results in musical noise. By 
expanding the signals in frequency domain through warping 
we can considerably mitigate this problem making the 
classes well away from each other and the peaks split. 
However, since by expanding the signals the length of the 
signal increases there is a compromise between the amount 
of expansion. This results in an increase in complexity, time, 
and the degree of sparseness. In the literature l0 and l1 norms 
are often used as measures of sparseness, i.e. for l0 -norm, 
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number of sources and m is the signal duration. Here, the 
received samples are distributed around a number of distinct 
DOAs proportional to the number of sources. In such 
(convolutive) cases the value of peak divided by variance 
can best represent the sparseness. Normally the peak 
amplitudes are rather small. On the other hand, if the 
warping parameter b is largely negative, the variance will be 
high. Therefore we choose b (which in this application 
remains the same for all the observed signals) in order to 
have  
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where dist refers to distribution. Figure 4 shows the 
histogram for the values of θ when we have two mixtures 
and three sources set in 300 and 900 and 1350 positions; (a) 
is for before warping and (b) is for after warping the 
mixtures. The mixtures are recorded in a real room 

environment. Figure 5 shows the effect of warping on the 
spectrum (DFT points=512).  
 

 
(a)        (b) 

Fig. 4. Effect of warping on the DOA for convolutive mixtures; (a) 
before warping and (b) after warping (b=0.5).  
 

 
Fig. 5. The effect of warping on the spectrum; top plot refers to the 
case without warping and bottom one shows the case with warping 
(b=0.5). 
 

5.  EXPERIMENTAL RESULTS 
 
5.1.  FDBSS and the Permutation Problem: 
To see the effect of frequency warping on mitigation of 
permutation problem the source signals are downloaded 
from the website http://medi.uni-oldenburg.de. Both signals 
are sampled at 12 kHz. The samples are 16-bit 2’s 
complement in little endian format. The blocks are 
considered to be 512 samples. In the first experiment the 
sources are mixed using  
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where H11(z) = 1+1.0 z -1 – 0.75 z –2, H 21(z) = - 0.7 z -5 – 0.3 
z –6 + 0.2 z –7, H 12(z) = 0.5 z –5 + 0.3 z –6 0.2 z –7, H 22(z) = 0.8 
– 0.1 z –1. The frame lengths are set to 512 samples. The 
weights are initialised as W0(ω)=I, and µ =1, η =0 and λ = 
0.01. The results are analysed, by comparing the error, 

]||sy||[ 22 −= Eε , for two different trials: (I) when the 
FDBSS is applied without warping, (II) the same as (I) but 
with warping the mixtures (b=-0.5), (III) when FDBSS 
followed by mitigation of the permutation and estimation of 
the DOA is performed, and (IV) the same as (III) but with 
warping the mixtures. Table 1 illustrates the results 



respectively. Clearly, warping followed by DOA-based 
method mitigates the permutation problem more effectively. 
 

Table 1. Estimation error for the conventional BSS and for when 
the signals are warped before BSS: 

ε2 No Warping With Warping (b=-0.5) 
BSS -18.1 dB -19.8 dB 

BSS and DOA -20.3 dB -22.5 dB 
 
         For the real room recording the microphone music 
sounds are downloaded from http://www.esp.ele.tue.nl/. The 
room size was a 3.4 × 3.8 × 5.2 m3, and the microphones 
spaced 58 cm apart. The sampling frequency and the bitrate 
were 12 kHz and 16 bits/sample respectively. In a subjective 
comparison, eight out of ten trained listeners verified the 
improvement achieved as a result of application of the 
warping to reduce the permutation problem. 

 
5.2.  Effect of Warping on SCA 
Here we assume b to be different for different observed 
signal, i.e. b=[b1, b2, . . ., bn]T where n is equal to the 
number of mixtures and T denotes transpose operation. The 
objective is then minimising the l0-norm. In this part we 
considered three musical signals (playing the same piece of 
music) mixed using  
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to make two mixtures, where H11(z) = 1+1.0 z -1 – 0.75 z –2, 
H 21(z) = - 0.7 z -5 – 0.3 z –6 + 0.2 z –7, H 12(z) = 0.5 z –5 + 0.3 z 

–6 0.2 z –7, H 22(z) = 0.8 – 0.1 z –1 , H 13(z) = 0.4 z –5 - 0.3 z –6 
+0.2 z –7, H 23(z) = 0.7 – 0.2 z –1+0.1z-3. In the first trial the 
method explained in part 4 has been used for separation of 
the first source and the ICA-based BSS method given in [4] 
has been used for separation of the other two sources. The 
extraction range parameter, ∆, has been set to 60. In the 
second trial b has been iteratively computed to have 
minimum l0-norm and the mixtures were warped. Then the 
method in the first trial was applied. The results are given in 
Table 2. For the real room recording two mixtures of three 
music signals have been used. Similar sampling frequency, 
number of bits/sample, and b has been used. In a subjective 
comparison, nine out of ten trained listeners verified the 
improvement achieved as a result of application of the 
warping to increase the sparseness. 
 

6.  SUMMARY AND CONCLUSIONS  
 
In this paper the effect of warping has been investigated 
specially in the context of SCA and we demonstrated that 
the performance of the system is enhanced when the signals 
are warped before the separation process. In fact, in SCA the 
warping parameters can be adaptively calculated to have the 
maximum sparseness. Also, the inherent permutation 
problem has been significantly mitigated since the angle of 

arrivals is better estimated. It has been illustrated that 
frequency warping increases the sparseness of the mixtures 
in the underdetermined cases. As a result, separation of the 
signals become more accurate and the musical noise 
decreases. Optimization of the algorithm is dependent on the 
adaptation process for computation of the warping 
parameters. 
 
Table 2. The estimation error for the conventional SCA and when 
the signals are warped before SCA: 

ε2 Without Warping With Warping (b 
computed iteratively)  

SCA -15.4 dB -17.8 dB 
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