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ABSTRACT 
This paper presents a new multistage comb-cosine 
decimation filter with the improved magnitude response. 
The proposed structure consists of a comb section followed 
by different cascaded comb and cosine prefilter sections, 
each down-sampled by a specific down-sampling factor. The 
number of sections depends on the decimation factor of the 
original comb decimator, and the number of cascaded filters 
can be different for different stages. The first section is 
realized in a non-recursive form. Using the polyphase 
decomposition, the subfilters of the first section can be 
operated at the lower rate. The magnitude response is 
improved by using cosine prefilters which can also be 
moved to a lower rate. The sharpening technique is applied 
to all but the first comb section. The resulting structure is 
multiplier-free, does not have any filtering at the high input 
rate, and the magnitude response has a low passband droop 
and high stopband attenuation.  

1. INTRODUCTION 

     A commonly used decimation filter is the Hogenauer [1] 
cascaded-integrator-comb (CIC) filter, which consists of two 
main sections, cascaded integrators and differentiators, 
separated by a down-sampler. This filter has very low 
complexity but exhibits two main problems: 
1. The differentiator section operates at the lower data rate, 

while the integrator section works at the higher input 
data rate thereby resulting in higher chip area and higher 
power dissipation. 

2. The magnitude characteristic of the CIC filter has a high 
droop in the desired passband and a low stopband 
attenuation. 

     Various methods have been advanced to solve these two 
issues. The use of a non-recursive structure of a comb filter 
reduces the power consumption and increases the circuit 
speed, [2-3]. More details on the comparison of the 
performances of the recursive and non-recursive structure 
are given in [3].  
     Several schemes have been proposed to improve 
magnitude characteristic of the comb decimation filters. The 
method outlined in [4] uses the sharpening technique to 
decrease the passband droop and to increase the stopband 
attenuation. The main drawback of this method is that it 
requires sharpening to be performed at the high input rate, 
thereby resulting in higher power consumption. Methods in 
[5-6] allow the sharpening section to operate at the lower 

rate. In order to attain the desired low stopband attenuation, 
the rotated sinc (RS) filter is introduced in [7]. The price 
paid for improving the stopband (the passband droop is not 
improved) is the introduction of two multipliers with the one 
multiplier working at a high rate. In [8] a new multistage 
comb-rotated sinc (RS) decimator with no filtering at the 
high input rate is introduced, thereby permitting both 
multipliers of the RS filter to work at the lower rate. The 
method in [9] uses sharpened comb filter cascaded with the 
RS filter to reduce the passband droop. The price paid for 
the improved magnitude response is that the operations are 
carried out at the high rate. 
     A new-comb-RS decimator with the sharpened 
magnitude response where both multipliers of the RS filter 
work at the lower rate and the sharpening is also performed 
at the lower rate is presented in [10], and a new multiplier-
free CIC-cosine decimation filter with no filtering at the 
high input rate is introduced in [11]. 

The main idea of this paper is to propose the decimation 
filter which is multiplier-free, has no filtering at the high 
input rate and possesses low pass-band droop and high stop-
band attenuation. The paper is organized as follows. In 
Section 2 the multistage cascaded comb-cosine decimation 
filter is presented and in Section 3 the application of 
sharpening technique is discussed. An efficient multistage 
structure is proposed in Section 4. 

2. CASCADED COMB-COSINE FILTER 

     We use the result presented in [6] which introduces the 
cascaded modified comb filter. By considering the case when 
the down-sampling factor can be expressed as  
                            M NMMMM ...321=                  (1) 
we can write the comb transfer function as 
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For example, for M = 32 and N = 3, we can select 



                        M1 = 4, M2 = 4, M3 = 2,                               (4) 
which yields 
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Fig. 1 shows the corresponding magnitude response for                 
,2,4 321 === kkk  and                   (15) .2,4 21 == nn

 

     Using Eqs. (1-3) we express the modified comb filter 
 as, )(zHm

               (6) ),()()()( 11121
21

−⋅⋅⋅⋅⋅⋅⋅= NN MMk
N

Mkk
m zHzHzHzH

where ki is the number of the cascaded  filters Hi. Notice 
that the comb subfilters Hi, i=2,…N-1 can be moved to a 
lower rate, [12]. 
     It follows from Eqs.(6) and  (4-5) that, 

a. Overall magnitude response.                .                 (7) )()()()( 16
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     To improve the magnitude characteristic of the filter (6) 
we use the cascaded cosine prefilter [11] introduced in [13], 
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     The transfer function of the cascaded comb and cosine 
prefilters is 
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where ni is the number of cascaded cosine prefilters, and 
from [11],  

b. Passband. 
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     The decimator factor of the second stage, which usually 
follows the CIC filter, determines the frequency fA at which 
the worst-case aliasing occurs, as well as the passband 
frequency fc at which the worst –case aliasing occurs, [4]. 
     For example, for the case of factor-of-8 second 
decimation the frequencies of interest normalized with 
respect to the high sampling rate Fs=1 are  
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c. Stopband. 
Figure 1: Example 1. 
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3. PROPOSED DECIMATION FILTER  

Example 1:      We now use the sharpening technique [14] to further 
improve the magnitude characteristic of the comb-cosine 
decimation filter (10). Applying the simplest sharpening 
method [14] given by  

For M=32 and (11) we have 
                           (13) .48/32;84/32 21 ===== KNNN
Therefore  
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to  in (6) we arrive at the transfer 
function of the proposed decimation filter, 
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where Sh{ } denotes the sharpening operation. As explained 
in Section 4,  the sharpening is not applied to H1. 
 
 Example 2: 
For M=32, choosing (4) and (13) from (17) we have  
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a. Overall magnitude response.  Using the values (15) we plot the magnitude characteristic 
of the proposed decimation filter in Fig.2. Note that the 
magnitude characteristic is improved in both the passband 
and the stopband of interest. The passband droop at fc is 
0.1944 dB and the stopband attenuation at fA is 144.5657 dB. 

 

     In the next section we consider how to obtain a more 
efficient structure for the decimation filter given in  (17). 

4. EFFICIENT STRUCTURE 

     The proposed decimation filter (17) and the cascade 
equivalence [12] are used to build an efficient structure.  
     We first consider an efficient structure of the filter 
presented in Example 2. According to (18), we can move the 
sharpened comb and cosine filters to a lower rate as shown 
in Fig.3.a.  b. Passbnd zoom. 
     Therefore, we have 
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and 
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     The corresponding sharpened comb filters are, [4] 
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 c. Stopband zoom. 
     Cosine filter   
                          (22) [ ] 11 )1)(1(125.0)( 8168 nn

COS zzzH −− ++= Figure 2: Example 2. 
 

is moved  to the second stage to become 0 , 

and to the third stage to become ( . 

11 )1(125. 2 nn z−+
1n)1 1z −+

     We denote cosine filters of the second and the third stage 
as (Fig.3.b) 

 
     Similarly, cosine filter 
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Figure 3: Efficient structure for Example 2. 
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Figure 4: General structure. 
 

     Using a similar approach we can obtain the general 
structure shown in Fig.4. The first section is the cascade of k1 
comb filters of length M1. The polyphase decomposition 
allows the polyphase filters to move to a lower rate, which is 
M1 times lower than the input rate, as explained in [3]. 
     Sharpened comb filters at all other sections can be 
realized as proposed in [4]. 

5. CONCLUSION 

     A new computationally efficient structure for a multistage 
comb decimation filter is proposed. The sharpened technique 
and the cosine prefilters are used to improve the magnitude 
characteristic of the filter.  
     As a result, the proposed filter has a low passband droop 
and high stopband attenuation at the frequencies of interest. 
Using different values for ki, ni and Mi we can manipulate the 
corresponding magnitude response.   
     The proposed structure is multiplier-free structure and has 
no filtering at the high input rate. The tradeoff lies in the 
slightly increased number of less complex comb filters in the 
first stage. Further research would be dedicated to the 
problem of systematically choosing the values of the 
parameters.  
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