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ABSTRACT

In this paper, we consider the problem of tracking an
object which moves along a certain 2-dimensional area
monitored by a network of wireless sensors. We propose
a novel decision fusion algorithm for target tracking based
on a recently proposed sequential Monte Carlo (SMC)
methodology called cost-reference particle filtering (CRPF).
Computer simulations reveal the feasibility of the proposed
method.

1. INTRODUCTION

There has been a recent surge of interest in the use of
networks of wireless microsensors to perform a variety of
signal processing tasks [1, 2, 3]. The key to most applications
is the development of effective algorithms for integrating the
information provided by the sensors [3]. When raw data
are collected for processing at a central node, data fusion
algorithms are necessary [3, 4, 5]. A more complex problem
arises when some processing is performed locally at the
sensors, which produce a simple (often binary) decision for
transmission to the central node. This setup is practically
appealing because it minimizes network communications,
but it usually requires complex decision fusion methods [3].
Research progress on decision fusion algorithms for target
detection and tracking can be found [6] and [3], respectively.

In this paper, we consider the problem of tracking
an object that moves along a certain 2-dimensional area
monitored by a network of wireless sensors. We assume
the sensors can measure some distance-related physical
magnitude (e.g., the received signal strength) and use it to
make a binary decision regarding the presence of the target
within a certain range. The resulting bit (1/0) is transmitted
to a central node, where the local decisions are integrated
to recursively estimate the current position and speed of the
target.

We propose a novel decision fusion algorithm for
target tracking based on the sequential Monte Carlo (SMC)
paradigm [7]. Specifically, we investigate a recently
proposed SMC methodology called cost-reference particle
filtering (CRPF) [8]. It is built on the basic principle
of standard particle filtering, i.e., the exploration of the
space of the signal of interest using randomly generated
sample trajectories (termed particles) which are adequately
weighted according to the available observations. However,
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and unlike conventional particle filters, CRPF techniques do
not require an explicit probabilistic model of the involved
signals. Instead, they depend on an arbitrary cost function
(not necessarily tied to any data statistics) and can attain
substantial advantage in terms of simplicity and robustness.

The remaining of this paper is organized as follows.
Section 2 introduces the signal model used in the considered
problem. The posterior Cramér-Rao bound (PCRB) is
derived in Section 3. In Sections 4 and 5, the basics of
the CRPF methodology and the specifics of the considered
algorithms are discussed, respectively. Computer simulation
results that illustrate the performance of the algorithm are
presented in Section 6.

2. SIGNAL MODEL

It is of interest to recursively estimate the position, rt =
[rt,x,rt,y]>, and the speed, st = [st,x,st,y]>, at discrete-time t
(signal samples are obtained with a period of Ts s) of a target
moving along the R2 plane. The time evolution of the 4×1
state vector xt = [r>t ,s>t ]> is given by the linear kinematic
model

xt = Axt−1 +Qut , (1)

where A =
[

I2 TsI2
02×2 I2

]
, Ts is the system observation

period, In is the n×n identity matrix, Q =
[

T 2
s
2 I2 02×2
02×2 TsI2

]

and ut ∼N (04×1,I2) is a Gaussian noise vector.
The network consists of N randomly deployed sensors

(with uniform distribution and density Ds units/m2) on the
region where the target needs to be tracked. The n-th sensor
is located at a known position rn, and when a target is
present, is able to measure some physical magnitude related
to the distance between the target and the sensor, denoted as
dn,t = ||rt − rn||. A typical example is the received signal
power, which can be converted into a distance measurement
if a model of the signal propagation attenuation is available.
In any case, we assume the resulting measurements are
corrupted with noise and yield

d̃n,t = dn,t + ln,t , n = 1, ...,N, (2)

where ln,t is a zero-mean perturbation. In this paper, we
assume ln,t ∼ `(0,b), where `(z|a,b) = 1

2b exp{−|z−a|/b}
is the Laplacian probability density function (pdf). Using



these distance estimates, the sensor makes a binary decision

yn,t =
{

1 if d̃n,t < a 1∨
(
d̃n,t < a 2∧ yn,t−1 = 0

)
0 if d̃n,t > a 2∨

(
a 1 < d̃n,t ∧ yn,t−1 = 1

) , (3)

where ∨ and ∧ denote logical or and and operations,
respectively, and 0 < a 1 < a 2 are distance thresholds. At the
central node, a decision fusion algorithm is used to estimate
the target trajectory, x0:t = {x0, . . . ,xt}, from the sequence
y1:t , where yk = [y1,k, . . . ,yN,k]> is the N×1 vector of local
decisions.

3. POSTERIOR CRAMÉR-RAO BOUND

The covariance matrix of any estimator x̂t computed from
the observations y1:t can be lower bounded using the PCRB

Cov(x̂t)−F−1
t ≥ 0, (4)

where Ft is the posterior Fisher information submatrix for
xt and ≥ 0 indicates that the matrix on the left-hand side is
positive semi-definite. Following [9], Ft can be recursively
computed as

Ft = Σ−1
u −Jt −Σ−1

u A
(
Ft−1 +A>Σ−1

u A
)−1

A>Σ−1
u ,

(5)
where Σu = QQ> is the covariance matrix of the noise term

Qut in (1) and Jt = Ep(yt ,xt )

[
¶ 2

¶ xt,i¶ xt, j
log p(yt |xt)

]
is the

Jacobian matrix of the log-likelihood. It must be noted here,
however, that the expectation in the definition of Jt cannot be
found in closed-form and must be estimated by Monte Carlo
integration.

The use of a double threshold, a i, i = 1,2, in the
local decision function (3) instead of a single threshold can
be justified using the PCRB. Figure 1 shows the curves
PCRBt = trace

(
F−1

t
)

(which is the sum of the minimum
achievable variances for each component in xt ) for two
different systems. It is observed that making the local
decisions using a double threshold yields better tracking
accuracy than using a single threshold. We note that
this is achieved at the expense of a negligible increase in
computational complexity and no communication overhead
at all.

4. COST REFERENCE PARTICLE FILTERING

A new class of SMC methods, termed cost reference particle
filtering (CRPF), has been recently proposed in [10]. The
new technique preserves the philosophy of exploring the state
space by generating random weighted particles, but differs
substantially from standard particle filtering algorithms. We
summarize the new methodology in this section.

Instead of imposing an explicit probabilistic model on the
system (1)-(3), let us assume the availability of a real, lower-
bounded and additive cost function of the form

C (x0:t ,y1:t , l ) , l C (x0:t−1,y1:t−1, l )+4C (xt ,yt) (6)

where the forgetting factor l < 1 avoids attributing an
excessive weight to old observations. The cost yields a
quantitative assessment of the state sequence, x0:t , in view
of the observations, y1:t . We also introduce a one-step risk
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Figure 1: Comparison of the PCRB for systems with single-
threshold and double-threshold decisions. Curves obtained
by averaging 2000 independent simulations. Ts = 0.25 s,
Ds = 10−2 sensors/m2,

function R(xt−1,yt) that measures the adequacy of the state
at time t−1 given the new observation, yt . A natural choice
of the risk (for zero mean state noise) is R(xt−1,yt) =
4C (Axt−1,yt).

Given the set W t = {x(m)
0:t ,C

(m)
t }M

m=1, where C
(m)

t ,
C (x(m)

0:t ,y1:t , l ), the CRPF algorithm proceeds sequentially
as follows:
1. Initialization. Assuming x0 ∈ I0 ⊂ Rnx , sample
{x(m)

0 }M
m=1 using an arbitrary pdf. The costs are set to

a single constant, C
(m)
0 ≡ cst, m = 1, ...,M.

2. Recursive loop. At time t +1, perform:
(a) Selection. The most promising particles up to time t

are stochastically selected for propagation according
to their risk,

R
(m)
t+1 , l C

(m)
t +R(x(m)

t ,yt+1).

The selection yields an intermediate particle set, ˆW t ={
x̂(m)

0:t , Ĉ
(m)

t

}M

m=1
.

(b) Propagation. For m = 1, ...,M, let

x(m)
t+1 ∼ pt+1(x|x̂(m)

t )

C
(m)

t+1 = l Ĉ
(m)

t +4C
(m)

t+1

where 4C
(m)

t+1 , 4Ct+1(x
(m)
t+1,yt), and pt+1 is an

arbitrary propagation pdf.
3. Estimation. We suggest to use the probability mass

function (pmf)
p (m)

t µ m (C (m)
t )

to compute

xmean
t =

M

å
m=1

x(m)
t p (m)

t ,

which attains an asymptotically minimum cost when
function m is adequately chosen. In principle, we only
require that m be monotonically decreasing and will refer
to it as a generating function in the sequel. It should be
noted that, although it is used to define the pmf p , m is
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Figure 2: Comparison of standard APF and CRPF algorithm. Left: Deviation from the true trajectory (m) when M = 50
particles. Right: Deviation from the true speed (m/s) when M = 50 particles.

not a pmf itself (it is defined on a continuous space), and
not necessarily a pdf (although some pdf’s can be used as
generating functions).
For comparison with the standard particle filters we

consider the CRPF with forgetting factor l = 0, where the
costs depend only on the particles at time t, i.e., C

(m)
t =

4C
(m)

t = 4C (x(m)
t ,yt) ∀m ∈ {1, ...,M}. We will restrict

our attention to CRPF algorithms where the selection is
performed at each time step using standard resampling
methods, although less restrictive possibilities exist (e.g., the
local selection method proposed in [10] or the proposal of
particles that minimizes the risk).

Different combinations of the cost function, C , the
particle propagation pdf, pt , and the generating function m
yield different algorithms. In particular, it can be interpreted
that each combination of m and C yields an implicit
probabilistic model for the system, since they allow the
assignment of probability masses to the particles. Compared
to standard SMC techniques, CRPF algorithms are more
flexible, more robust, and in general, easier to implement.

5. ALGORITHMS

We have applied the standard auxiliary particle filter (APF)
[11] and the CRPF-type algorithm to the tracking of x0:t from
y1:t .

The APF algorithm samples from the prior pdf, which
has the mixture Gaussian form

qM(xt) =
M

å
m=1

w(m)
t−1N (xt |Ax(m)

t−1,QQ>), (7)

and use the correct form of the likelihood p(yt |xt) to
compute the new weights. Assuming the noise processes ln,t ,
n = 1, ...,N, are independent and identically distributed ln,t ∼
`(0,b) and taking into consideration that the measurements
yn,t , n = 1, ...,N, are computed according to (3), it is
straightforward to find that

p(yt |xt) =
N

Õ
n=1

[d (yn,t−1)L (a 2|dn,t ,b)+

d (1− yn,t−1)L (a 1|dn,t ,b)] , (8)

where

L (a |a,b) =
∫ a

−¥
`(z|a,b)dz

is the Laplacian distribution function with parameters a,b
and d (·) is the Kronecker’s delta function. The algorithm
is summarized in Table 1.

Given W t = {x (m)
t ,w(m)

t }M
m=1, perform:

q(i)
t+1 µ w(i)

t p(y t+1|Ax (i)
t ) i = 1, ...,M

k(m) ∼ p(k) = q(i)
t+1 m = 1, ...,M

x
(m)
t+1 ∼ p(x t+1| x (k(m))

t ) = N (Ax (k(m))
t , QQ >)

w(m)
t+1 = w(m)

t
p(yt+1|x(m)

t+1)

p(yt+1|Ax
(k(m))
t

)

Normalize weights

Table 1: Recursive step of the APF algorithm.

In order to define the cost function for the CRPF, let
dn(xt) = ||rt − rn|| and r > 0 be an arbitrary radius, and
define yn(xt ,r) according to eq. (9). If we let y(x′t) =
limr→0+ y(x′t ,r) and note that y(x′t) ∈ {1,0}N , we can build
a simple cost function using the Hamming distance (denoted
as h(·, ·)),

4C (x′t ,yt) = h
(
yt ,y(x′t ,r)

)
. (10)

We build a generating function according to

m (Ct) = u
(∣∣∣∣Ct −min

k

{
C

(k)
t

}∣∣∣∣
)

. (11)

where u is a monotonically decreasing function defined by

u (z) = z−g exp{−b z}, z≥ 0, (12)

with g and b being positive constants.

6. COMPUTER SIMULATIONS

We have carried out computer simulations to illustrate the
performance of the considered algorithms. The model
parameters for the numerical experiments are as follows:
Ts = 0.25 s, Ds = 10−2 sensors/m2, a 1 = 14 m, a 2 =
16 m and b = 1/

√
2 (unit variance of the measurement

Laplacian noise). The starting target position and speed are
randomly drawn from N (0,10I4) and the CRPF algorithm
with continuous cost function employ r = 4 m as a radius.

We have studied both the percentage of correct tracks
attained by each algorithm and the accuracy of estimation.
A ‘correct track’ is achieved when the distance between the



yn(xt ,r) =





1 if (dn(xt) < a 1− r)∨ [(dn(xt) < a 2− r)∧ (yn,t−1 = 0)]
0 if [(dn(xt) > a 1 + r)∧ (yn,t−1 = 1)]∨ (dn(xt) > a 2 + r)

−1
2r dn(xt)+ a 1+r

2r if (a 1− r < dn(xt) < a 1 + r)∧ (yn,t−1 = 1)
−1
2r dn(xt)+ a 2+r

2r if (a 2− r < dn(xt) < a 2 + r)∧ (yn,t−1 = 0)

(9)

true target position, rt , and the position estimate provided by
the particle filtering algorithm, r̂t , after 35 s is ||rt − r̂t || <

1√
Ds

(i.e., we have uncertainty only up to the coverage area
assigned to a single sensor). Figure 2 shows the accuracy of
estimation averaged over 1000 independent simulation runs
by means of the position mismatch (left), i.e., given the true
position and its estimate, we compute the error signal ept =
||rt− r̂t || (m) for each algorithm and each simulation run, and
the speed mismatch (right), i.e., given the true speed, vt , and
its estimate, v̂t , we compute the error signal evt = ||vt − v̂t ||
(m/s) for each algorithm and each simulation run.

Finally, Figure 3 depicts the mean square error (MSE)
computed for the last 5 s of simulation for different number

of particles, MSE = å
b 35

Ts
c

t=b 30
Ts
c ‖xt − x̂t‖2 , where x̂t is the full

state estimate. In this case 3000 runs have been averaged
to obtain the plots (1000 for each value of the number of
particles, M).

In summary, our numerical results indicate that the CRPF
algorithm is more reliable (higher number of correct tracks)
and accurate when the number of particles, M, is low (this
is coherent with the numerical study of a navigation problem
in [10]). As M grows, the algorithms become almost equally
reliable. Note that the CRPF algorithm is not designed to
optimize the MSE between the true state sequence and its
estimate, hence we cannot expect any ‘optimal’ performance
in this sense. In exchange, it is insensitive to the statistics of
the observations, which need to be known in detail in order
to design the APF.
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Figure 3: MSE comparison of standard APF and CRPF
algorithm for correct tracks when M = 50, M = 200 and
M = 800.

7. CONCLUSIONS

We have proposed a new method to solve the problem
of tracking an object which moves along a certain 2-
dimensional area monitored by a network of wireless
sensors that transmit binary decisions to a fusion center.
The fusion algorithm is based on the recently proposed
cost-reference particle filtering (CRPF) methodology which
substitutes the explicit probabilistic model required in
classical particle filtering methods by an arbitrary cost

function (not necessarily tied to any data statistics). The
resulting method attains substantial advantage in terms of
simplicity and robustness compared to those based on the
traditional approach.
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