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ABSTRACT 

In adaptive signal processing, joint process estimation plays 

an important role in various estimation problems. It is well 

known that a joint process estimator consists of two struc-

tures, namely the orthogonalizer and the regression filter. In 

literature, orthogonalization step is performed either by or-

thogonal transformations or by linear predictors. While the 

orthogonal transformations do not preserve entropy; the 

predictors, such as the lattice, do preserve it. However, the 

steady-state performance of such linear predictors is not as 

good as those of the orthogonal transformations. Lattice 

filters do not perform perfect orthogonalization when they 

operate as gradient-based adaptive predictors. In this work, 

adaptive escalator predictor is proposed to be used as the 

orthogonalizer of the joint process estimator. The proposed 

method preserves the entropy and achieves perfect orthogo-

nalization at all times. Moreover it has good steady-state 

performance compared to those structures utilizing gradient 

adaptive lattice filters. 

1. INTRODUCTION 

 

Adaptive filtering is widely used in many areas such as sys-

tem identification, echo cancellation, channel equalization, 

linear prediction and spectral estimation. In these applica-

tions, generally a desired signal is estimated from its ob-

served form. It is well known that orthogonalization of sig-

nals provides great number of advantages in the estimation 

of signals [1].  

The Least Mean Square (LMS) algorithm [1] is widely used 

in adaptive signal processing applications. The LMS algo-

rithm is preferred as a tool of adaptation because of its sim-

plicity and low computational complexity. However it has 

slow convergence for highly correlated input signals, such 

as speech. Decorrelation of the input signal will reduce the 

eigenvalue spread and hence will speed up the convergence. 

If the processing is performed in a batch mode, Karhunen 

Loeve Transform (KLT) is the optimal way of orthogonali-

zation [1]. However, when the processing needs to be done 

online, as in case of most adaptive processing methods, the 

orthogonalization also needs to be done sequentially, as ob-

servation data arrives. Joint Process Estimation (JPE) is de-

veloped for this purpose and performs jointly the online or-

thogonalization of the data and the estimation of the signal 

by using a multiple regression filter[1]. The scheme of JPE 

is illustrated in Fig. 1.  

Two main approaches are utilized for the orthogonalization 

stage, which may be realized either by an orthogonal trans-

formation or by linear prediction [2], which may be per-

formed by a lattice filter. Within the first group, various 

transformations are used in literature, such as the Discrete 

Cosine Trasform (DCT), Discrete Wavelet Transform 

(DWT) and others [3,4]. It is well known that the DCT ap-

proximates the KLT in the best possible way, among these. 

However, these transformations do not preserve the entropy, 

thus information is lost after these operations. That is why, 

this approach is also known as a “prewhitening” method. 

Lattice filter, however, preserves the entropy after the or-

thogonalization and thus preferred in applications, where the 

loss of information needs to be avoided. The Gradient Adap-

tive Lattice (GAL) is proposed to be used as the orthogo-

nalization stage of the online JPE’s [1]. Despite its preferred 

low computational complexity, GAL cannot perform perfect 

orthogonalization at all times [5].  

In this work, we propose a new JPE structure, exploiting the 

use of an Adaptive Escalator Predictor (AEP) as the or-

thogonalization stage  of the JPE structure. In literature, AEP 

is merely used as a linear predictor [6] and as a postproces-

sor after the DCT block of a transform-domain adaptive 

filter [7]. Since perfect orthogonalization can be accom-

plished by an AEP, it has superiority against the widely used 

GAL predictor. It is known that the AEP utilizes the use of 

Gram-Schmidt orthogonalization as in GAL. It is also 

known that as a result of using Gram-Schmidt orthogonali-

zation, the signal is represented in terms of its backward 

prediction errors, which span the same information space [1, 

pp. 178-180]. So, by directly applying the correlated signal 

to the input of AEP, the possible information loss that can 

arise due to the use of an ortohogonal transform, such as 

DCT, is avoided. Thus, in the proposed JPE, the DCT block 

of [7] is discarded in order to preserve the information.  

The reason of the performance difference between the two 

JPE’s that utilize the use of GAL or AEP as their first stage, 

can be explained by their structures. Lattice filters consist of 

cascaded stages and the backward prediction errors are ob-

tained sequentially, the convergence rate of a particular lat-

tice stage depends on the convergence rates of the preceding 

stages thus perfect orthogonalization of the backward errors 

cannot be satisfied simultaneously at all times [5]. AEP, how-

ever, has a parallel structure and thus, produces backward 

prediction errors of different orders in parallel. That is, the 

convergence of each stage is independent from the preceding 

ones. 



After the orthogonalization stage, power normalization 

should be performed in order to be able to increase the con-

vergence speed of the LMS algorithm used to adapt the coef-

ficients of the regression filter at the second stage of JPE. As 

a result of this power normalization, the eigenvalue spread of 

the signal at the input of the regression filter is reduced. In 

other words, the signal that is composed of the backward 

prediction errors are whitened. Although the whitening pro-

cedure may seem to be contradictory with the argument of 

“not losing information”, the best estimate can be recon-

structed by applying the inverse operation of Gram-Schmidt 

orthogonalization.  

The rest of the paper is as follows: In Section 2, the proposed 

JPE structure, utilizing the use of an AEP as its first stage, is 

explained, which will be referred to as the Adaptive Escalator 

Joint Process Estimator (AEJPE). In Section 3, computer 

simulations are given and finally the conclusions are drawn 

in Section 4. 

 

2. Adaptive Escalator Joint Process Estimator (AEJPE): 

 
The proposed AEJPE is a structure to solve the well-known 

joint-process estimation problem. It consists of an AEP and 

a JPE.  AEP is a subsystem used to achieve orthogonaliza-

tion  (decorrelation) of the input and to generate orthogonal 

backward prediction errors, and JPE is a regression filter 

which simultaneously does estimation/filtering using the 

orthogonal backward prediction errors which span the same 

space as the correlated input (cf. Fig. 2). In AEJPE, the esca-

lator filter rather than the lattice filter accomplishes the 

Gram-Schmidt orthogonalization. It exploits the use of par-

allel adaptation resulting in smaller misadjustment values. 

Moreover this method is not affected by the characteristics 

of the system to be identified and provides a very good 

steady-state performance with some increase in computa-

tional complexity.  

The proposed structure can be summarized as follows: 

The backward prediction errors obtained at the output of 

each stage of AEP, can be order updated as follows: 
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where i-k+1≥1 ;  k = 1,2,........,M;  i = 0,1,2,..........,M and 

)(, nb ik
 is the error at the k-th stage of an i-th order filter.  

αk,i-k+1 is the (i-k+1)-st coefficient of the k-th stage. Back-

ward prediction errors can be initialized as b0,i = u(n-i), 

where u(n-i)  is the input signal. The update equations for 

the coefficients of the AEP, utilizing an LMS type of adapta-

tion are given as:  
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where the step-size parameter µ(n) is selected as a time-

varying parameter in terms of the power estimate, 
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, 1

ˆ
( ) , 1,2,...,

( )k k

n k M
n

µ
µ

ξ −

= =                (3) 

 

where ˆ 0.1µ ≤ . This is where the power normalization takes 

place in order to achieve whiteness and time update of the 

power can be recursively estimated as follows: 
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where the smoothing factor β is a constant between zero and 

one. It should be noted that the AEP converges to a better 

result than ALP [6] since each stage is updated independ-

ently from the other stages. On the other hand, error propa-

gation is involved in ALP and thus causes performance dete-

rioration [5]. In AEP, the backward prediction errors, 

)(, nb iM
, are generated in parallel thus they are simultane-

ously orthogonal at all times, which is not the property of 

lattice filters due to having sequential time and order up-

dates. 

Then these errors are applied as input to the JPE where an 

estimate of the desired signal, )(nyi
, is obtained from the 

available data as follows: 

 

 yi (n)=bM,i (n)wi(n),   i=0,1,….M                (5) 

 

Here wi’s are the coefficients of the JPE. In this work, the 

local adaptation of each regression coefficient is utilized, 

where each coefficient is updated by the corresponding error 

utilizing an LMS type of adaptation as:  
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for i=0,1,...,M. Here ei’s are the local estimation error for the 

i-th regression coefficient. These errors can be defined for 

the first coefficient and the other coefficients as follows, 

respectively. 
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for i=1,2,....,M.  )(nµ  in Eq. (6), is the normalized step-size 

parameter as defined by Eq. (3)  for k=M    and k-1=i. In 

this case, µ̂  is a constant usually selected to be less than 0.1 

for a well-behaved convergence  and ξM,,i(n) is the power of 
the i-th input bM,i(n) of the JPE part. This power can be esti-

mated using Eq. (4) where k= M and k-1=i. The power 

normalization is done in order to increase the convergence 

speed of the LMS algorithm as in the transformed domain 

LMS (TRLMS) [3,4].  
7M(M+1)/2 multiplications and 2M(M+1) additions are 

required for each update of AEJPE where M is the order of 

the structure. 



It should be noted that in this work the adaptation of both 

the AEP and the JPE coefficients are performed simultane-

ously.  

3. SIMULATIONS AND DISCUSSION  

 

The proposed algorithm is used to identify an unknown 
plant, which is taken as a Finite Impulse Response (FIR) 

filter composed of 8 arbitrary tap weights. Both the adaptive 

filter and the unknown plant are driven by four different 

signals, that are generated by passing a white noise through 

four different filters, which are also used in the simulations 

of [4]. The magnitude response of each filter is shown in 

Figs. 3a-3d. The proposed AEJPE algorithm is compared 

with LMS, Normalized LMS, Transform Domain Least 

Mean Square (TRLMS) [3,4] where DCT is used as the 

transform (DCTLMS), and ALJPE [1] algorithms; the con-

vergence of the mean squared error (MSE) as a function of 

time is presented in Figs.4a-4d where coloring filters shown 
in Figs. 3a-3d, are used, respectively. No parameter change 

(such as ˆ( ), ,nµ µ β  ) has been performed in order to test the 

behaviour of various algorithms to the signal change. It is 

observed that AEJPE is robust to the different signals that 

are used, whereas all other methods can behave differently. 

As can be seen from these figures, the proposed AEJPE al-

gorithm has a very good steady state MSE performance. The 

convergence of AEJPE is fast and the steady-state MSE 

value is very low. It is also seen that, only for the low-pass 
signals, the convergence rate of DCTLMS is around that of 

AEJPE, since DCT approximates KLT very well for such 

signals. In all other cases, AEJPE outperforms when com-

pared with others. This is due to the fact that escalator has a 

parallel structure and the backward prediction errors are 

orthogonal at all times. The updates of the regression and 

the escalator coefficients can be done simultaneously, thus 

these two sets of coefficients are optimum at the same time. 

However this is not the case in ALJPE where both regres-

sion and the lattice coefficients can not be optimum at the 

same time since lattice is a serial structure. Thus, perfect 

orthogonalization cannot be obtained with ALJPE. On the 

other hand, perfect orthogonalization can be obtained by 

AEP. In addition to these, since the proposed AEJPE utilizes 

joint process estimation with simultaneous Gram-Schmidt 

type of orthogonalization, it does not destroy the informa-

tion content of the signal contrary to the prewhitening meth-
ods. The entropy of the input signal in AEJPE is preserved 

during the process of the orthogonalization. So, the best es-

timate can be reconstructed without losing any information. 

4. CONCLUSIONS 

A new joint process estimator that utilizes the AEP to per-

form Gram Schmidt orthogonalization process is proposed 

in order to use the computationally simple LMS algorithm in 

the regression part of JPE’s. The developed algorithm pre-

sents a compromise between the information preserving 

methods with poor steady-state performances, such as the 

ALJPE, and those with good convergence results, but en-
tropy losing prewhitening methods, such as TRLMS tech-

niques. Finally, the proposed AEJPE structure can be util-

ized where an online JPE is needed and provides the best 

performance among all algorithms based on gradient type of 

adaptation. 
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                                                                                                    Fig. 1. Joint Process Estimator   
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Fig. 3. Magnitude Responses of four  different 

Coloring Filters, (a) High Pass, (b) Band Pass, (c) 

Band Stop, (d) Low Pass 
 

 

 

 

 

 
Fig. 2. Adaptive Escalator Joint Process Estimator Architecture of order M 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 4. MSE curves of the methods for the signals colored by the filters of Fig. 3a-3d 
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