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ABSTRACT
As a spread spectrum technique, multi-carrier spread spec-
trum (MC-SS) systems are able to mitigate the effects of fad-
ing, interferences and Doppler frequency shifts as well as to
support multiple access schemes. It is possible to get opti-
mum performance from MC-SS systems by carefully choos-
ing the spreading sequences. However, due to inter-user in-
terferences performance degrades as the number of users in-
creases unless the transmission channels are modeled and es-
timated. In this paper, we present a new spreading sequence
obtained from a complex quadratic sequence multiplied by a
pseudo random noise sequence, thus exploiting the properties
of constant envelope and statistical independence. The prop-
erties of the new spreading sequence enable us to estimate
the multi-user channels and design a receiver that is robust
to interference and intentional jammers. The performance of
the proposed system is illustrated by simulations.

1. INTRODUCTION

Multi-carrier modulation techniques are known to have bet-
ter performance than single carrier systems in multipath fast
fading environments. On the other hand, spread spectrum
communication systems are well known for their immunity
to channel noise, mitigation of intentional jamming or non-
intentional inter-user interference. Combining these two
has led to multi-carrier spread spectrum (MC-SS) systems
[1, 2]. In MC-SS, the data is spread by complex coeffi-
cients and then modulated by carriers of different frequen-
cies. To achieve desirable flat spectrum, while providing a
constant envelope, complex quadratic sequences are used as
the spreading functions [2].

In multi-carrier modulation systems, spreading code de-
sign is an important issue since it influences the system per-
formance. There is usually a tradeoff between multi-path re-
jection properties and inter-user interference properties. Ide-
ally, the cross correlation between the codes must be zero
to eliminate multiple access interference. Pseudo noise se-
quences have low correlation between shifted versions of the
same sequence and a low cross correlation between different
sequences. Here we present a new spreading sequence ob-
tained from a complex quadratic sequence presented in [2]
multiplied by a pseudo random noise sequence, thus taking
advantages of the properties of constant envelope, and statis-
tical independence. In the proposed MC-SS system, the data
symbol d(i) is spread by a new frequency domain spreading
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coefficients G′(k) which then modulate N carriers. G′(k) is
defined as G′(k)=G(k)P(k), where P(k) is a pseudo random
sequence. The complex quadratic chirp sequences in time
and in frequency domain are

g(n) = e− j π
8 e j 2π

N
1
2 n2

, n = 0, · · · ,N −1

G(k) = e j π
8 e− j 2π

N
1
2 k2

, k = 0, · · · ,N −1

which are shift-orthogonal, Fourier transform pair, and
G(k) = g∗(k). As such, these sequences do not provide
enough transmission security, N distinct sequences are pos-
sible by circular shifting, and so we need a new sequence
that provides much higher security. We will show how such
a sequence can be obtained and its advantages in designing a
robust system capable of dealing with inter-user interference
as well as possible intentional jammers.

Given that time-varying nature of the mobile, wireless
communication channel causes spreading of the transmitted
signal in both time and frequency, equalization is needed to
be able to recover the sent data. Although the time-varying
nature of the channel is due to Doppler shifts, in many prac-
tical situations they are not significant or not considered. For
instance, the RAKE receiver used in CDMA spread spectrum
works well under slow fading even though the Doppler shifts
are not considered. However the the slow fading assump-
tion is not valid for fast moving environments. In such cases
modeling and estimation of the rapidly time-varying commu-
nication channel parameters are required.

Transmission channels are modeled as random, time-
varying systems [3, 4, 5]. In this paper, we use an MC-SS
channel model that is linear, time varying (LTV) for the du-
ration of a data bit. This provides a characterization of multi-
path, fast fading as well as slow fading channels. We will
show how to use the properties of the new spreading code
to estimate the parameters of the LTV channel model by
means of the spreading function that is computed from the
discrete evolutionary transform (DET) of the received sig-
nal. This permits an estimation of the number of paths, de-
lays, Doppler frequency shifts and the gains characterizing
the channel for one or more data bits. This information is
then used to estimate the data bit sent [6].

2. MC-SS SYSTEM MODEL

In multi-carrier spread spectrum (MC-SS) communications
systems the information bit is spread over K frequency do-
main coefficients and then used to modulate the K sub-
carriers of corresponding sub-channels [7, 8, 9]. In con-
trast to orthogonal frequency division multiplexing (OFDM),



which is also a multi-carrier scheme, the same data bit is
transmitted over all sub-carriers, so that the data rate is much
slower than that of OFDM systems. However, MC-SS is very
robust to intentional jamming and preferred in applications
where secure communication is required.

Information symbol, d, is multiplied with a set of fre-
quency domain spreading coefficients Ck, k = 0,1, · · ·N −
1, |Ck| = 1 and dCk, k = 0,1, · · ·N − 1 is obtained. Then,
just like in the OFDM systems, these coefficients are used to
modulate N orthogonal sub-carriers:

s(n) =
1
N

N−1

∑
k=0

dCke j j2πk
N n n = 0,1, · · · ,N −1 (1)

The modulation can be efficiently performed using the in-
verse discrete Fourier transform (DFT). Before sending s(n)
to the channel, last LCP samples are inserted in front and
called the Cyclic Prefix (CP). This is done to eliminate the
effects of intersymbol interference (ISI) caused by the chan-
nel time spread. The length of the CP is taken at least equal
to the length of the channel impulse response h(m, `). The
transmitted signal is assumed to be corrupted in the channel
by additive white Gaussian noise η(n). The received signal
can then be written as;

r(n) =
L−1

∑̀
=0

h(n, `)s(n− `)+η(n) (2)

The receiver discards the Cyclic Prefix and demodulates the
signal using an N-point DFT as

Rk =
N−1

∑
n=0

r(n)e− j j2πk
N n (3)

Assuming the channel is time-invariant during one transmit
symbol, i.e., 0≤ n≤N−1, then Rk = d Ck Hk +Nk where Hk
are the LTI channel frequency response coefficients, and Nk
are the DFT coefficients of the noise, η(n). The data bit can
be estimated from above provided that the channel informa-
tion is given.Most of the channel estimation methods assume
a linear time–invariant model for the channel, which is not
valid for fast-varying environments [10]. A complete time-
varying characterization of the channel is presented here by
using a time-frequency approach.

2.1 Channel Model
The time-varying frequency response of a communication
channel, also known as Zadeh’s function [3, 6], character-
izes the channel in terms of time delays, Doppler frequency
shifts and gains, all of which vary randomly in the model-
ing. The existing connection between the Zadeh’s function
and the evolutionary spectral theory can thus be exploited to
estimate the channel parameters and provide a way in the re-
ceiver to detect the transmitted data. An L-path fading chan-
nel with Doppler frequency shifts is generally modeled by a
separable impulse response:

h(n, `) =
L−1

∑̀
=0

α`δ (n−N`)e jψ`n (4)

where {N`} represent the delays, {α`} are the attenuations of
transmission paths, and {psi`} are the Doppler frequencies.

The Doppler frequency shift ψi, on the carrier frequency ωc,
is caused by an object with radial velocity υ and can be ap-
proximated by ψi ∼=

υ
c ωc, where c is the speed of light in

the transmission medium [11]. In wireless mobile communi-
cation systems, with high carrier frequencies, Doppler shifts
become significant and have to be taken into consideration.
We will now show how to estimate these parameters using
the evolutionary spectral theory.

The frequency response of the LTV channel is given by;

H(n,ωk) =
L−1

∑̀
=0

α`e jψ`ne− jωN` , (5)

which is the Fourier Transform of the impulse response
h(n, `) in (4). Now, the bi-frequency function B(Ω,ωk) is
found by computing the Fourier transform of H(n,ωk) with
respect to the n variable:

B(Ω,ω) = 2π
L−1

∑̀
=0

α`e− jωN`δ (Ω−ψ`) (6)

Finally, from the inverse Fourier transform of B(Ω,ω), with
respect to ω , the spreading function is given by;

S(Ω,k) = 2π
L−1

∑̀
=0

α`δ (Ω−ψ`)δ (k−N`) (7)

which displays peaks located at the delays and the corre-
sponding Doppler frequencies, and with 2πα` as their am-
plitudes, which are used to estimate the bit sent.

3. A ROBUST MC-SS SYSTEM

The proposed multi-user, MC-SS communication system for
uplink transmission [1, 7] is shown in Figure 1:
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Figure 1: Multi-user MCSS transmission (uplink)

The proposed spreading sequence g′(n) is complex and
can be obtained from the product of G(k) and a pseudo-noise
sequence P(k). Clearly the spectrum of g′(n) is unity given
that both |G(k)| = |P(k)| = 1, thus the g′(n) is a white-noise
like sequence. To obtain an expression for g′(n), let us as-
sume G(k) and P(k) are of length N each, then

G(k)P(k) = G(k)
N−1

∑
i=0

piδ (k−2πi/N)

=
N−1

∑
i=0

G(2πi/N)piδ (k−2πi/N)

where pi = ±1 randomly chosen. Its inverse Fourier trans-
form is of the form:

g′(n) =
1
N

N−1

∑
s=0

psG(2πs/N)e− j 2πsn
N (8)



a sequence with complex coefficients that has all possible fre-
quencies. The time characterization of the proposed MC-SS
system is obtained by assuming g′u(n) is a complex pseudo-
noise sequence obtained by different circular shifts of the
above g′(n), and so the spread sequence is su(n) = dug′u(n).

To recover the sent data for one of the users, we need to
estimate the parameters of its corresponding channel. This is
possible using a time-frequency spreading function that can
be obtained from the discrete evolutionary transform of the
received signal [6]. It can be shown then even in the multi-
user case this is possible.

3.1 Channel Estimation

In the above wireless MC-SS system, the received signal at
the base station is

r(n) =
U−1

∑
u=0

Lu−1

∑̀
=0

αu,` e jψu,`n su(n−Nu,`)+ µu(n)

=
1
N ∑

u,k
du G′

u(k)
Lu−1

∑̀
=0

αu,` e jωk(n−Nu,`) e jψu,`n + µu(n)

where µu(n) corresponds to channel noise plus the inten-
tional jammer, ηu(n) + ju(n). After replacing for the gen-
eralized frequency response in the above equation, we get,

r(n) =
1
N ∑

u,k
du G′

u(k) Hu(n,ωk) e jωkn + µu(n) (9)

=
U−1

∑
u=0

N−1

∑
k=0

Yu(n,ωk)e jωkn + µu(n) (10)

where (10) is the discrete evolutionary transform of the re-
ceived signal ru(n). Time-frequency kernel of this transform,
Yu(n,ωk), can be directly calculated from the signal [12]:

Yu(n,ωk) =
N−1

∑̀
=0

yu(`)wk(n, `)e− jωk` (11)

The window wk(n, `), in general, depends on time and
frequency [12]. Hence comparing the representation
of yu(n) in (9) and (10), we have that Hu(n,ωk) =
N Yu(n,ωk)/(duG′

u(k)). In [6], windows that are adapted to
the Doppler frequencies ψp of the received signal are used
to estimate the kernel: wp(m, `) = e jψp(m−`). The estima-
tion procedure of α`,ψ`, and N` via the spreading function
S(Ωs,m) is explained in detail in [6]. In 2, we show the
spreading function estimate of user u = 1 in a 3-user MC-SS
system using G′

u(k) as the spreading code. From the spread-
ing function, all the channel parameters of this user can be
observed and used for the detection.

After estimating the channel parameters, it is possible to
estimate the data sent from the received signal at the base sta-
tion. Assume now that the parameters of the shortest trans-
mission path α̂u,0, ψ̂u,0 and N̂u,0 are obtained. A decision
variable can be calculated from the noisy received signal at
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Figure 2: Estimated spreading function for one user.

the base station for user u such that,

ru,0(n) = r(n) g
′∗
u (n− N̂u,0)

e− jψ̂u,0(n)

α̂u,0

=

[

U−1

∑
u=0

Lu−1

∑̀
=0

du α`,ugu(n−Nu,`)e jψu,`(n) + µu(n)

]

×
g
′∗
u (n− N̂u,0)e− jψ̂u,0(n)

α̂u,0

Using the orthogonality of g′u(n) with its shifted versions
(i.e., for different u), and the fact that g′u(n) are uncorrelated
with the noise and the jammer, we are able to minimize the
effects of other users and the additive noise. In fact, the av-
erage value of ru,0(n) gives an estimate of du. We show in
the experiments that g′u(n) is very efficient in mitigating the
effects of white noise and wide-band intentional jammers.

4. EXPERIMENTAL RESULTS

We tested the bit error rate (BER) performance of the pro-
posed multi-user MC-SS system with different levels of
channel noise, Doppler frequency shifts, and intentional jam-
mer using 5 methods: (1) no channel estimation, (2) TF
channel estimation in MC-SS system with quadratic chirp
g(n), (3) with the proposed sequence g′(n), (4) LTI channel
model, ignoring Doppler effects, (5) known channel. Avail-
able bandwidth is assumed 500 kHz, and N = 100 subcar-
riers are used to modulate the data symbols. Fig. 3 shows
the BER versus SNR of the additive noise when the max-
imum Doppler on each path is 500 Hz in a 4 user system.
In the second simulation, we tested the BER versus Doppler
(500−5000 Hz), when the SNR is 15 dB and the results are
given in Fig. 4. Finally, we show in Fig. 5 the BER versus
jammer to signal ratio (JSR) for SNR = 10 dB, ψmax = 500.

5. CONCLUSIONS

We present a robust MC-SS system with a random and
complex spreading code that combines the advantages of
quadratic chirps in [2] and DS-SS systems. LTV channel pa-
rameters are estimated via the spreading function that is cal-
culated by the discrete evolutionary transform of the received
noisy signal. We illustrate the performance of our method for



different channel noise, Doppler frequency shift, and jammer
levels and find that the results are much better than LTI chan-
nel assumption, and LTV channel estimation for the system
with quadratic chirps.
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