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ABSTRACT
This paper addresses the problem of computing the op-
timum bit allocation in a subband coder with low se-
lectivity filters, while maintaining the power of quan-
tization noise below a given value. A low complexity
strategy that takes into account the frequency responses
of the synthesis filter bank, is proposed. The Lagrange
multiplier method is used to obtain the optimum bit dis-
tribution. The number of bits to be allocated to a sub-
band depends only on the frequency response of that
subband, on the variance of the corresponding subband
signal, on the maximum allowed noise power, and on
the decimation factors of all the subbands.

1. INTRODUCTION

Dynamic bit allocation is a major concern in any coding
scheme where a number of bits is adaptively assigned
among multiple sources (e.g., subbands), so that the
measured distortion is minimized. This problem was
first addressed in [1], which provides a solution for M
subbands, where the number of bits (Ri) allocated to a
subband depends on the standard deviations of the sub-
bands (σi), and on the available amount of bits (R), in
the form:

Ri =
R
M

+ log2

( σi

∏M
j=1 σ j

)
(1)

This approach allows the number of bits to be any
arbitrary real number, including negative values. An
optimal bit allocation algorithm for nonnegative integer
allocation was proposed in [2], based on marginal return
analysis.

There are several references in the literature related
to optimum bit allocation when low selectivity filter
banks are used to decompose the input signal. This
kind of filter banks cause quantization noise injected in
a subband to spread over the rest of them. This problem
is quite common in subband audio coding, where the
use of low selectivity filter banks is useful to implement

either low delay or low complexity audio coders. In [3]
a low complexity strategy which takes into account the
frequency responses of the synthesis filter bank is pre-
sented, ensuring that the overall distortion due to quan-
tization noise will be always below the masking thresh-
old. Unfortunately, this algorithm does not ensure the
number of bits allocated is minimum.

In [4] an optimum bit allocation algorithm, applica-
ble to either uniform and nonuniform frequency decom-
positions is presented, which considers the lack of se-
lectivity of actual filters. It minimizes the noise to mask
ratio under the constraint of the target average bit per in-
put signal sample rate R. The noise power leakage from
a given subband to the remaining is considered, but it
does not deal with the potential appearance of negative
solutions.

There are several applications where the objective is
to maintain a target signal quality, often specified with
a signal to noise ratio value, or some related global dis-
tortion measurement, such as the PRD (Percent Root-
mean-square Difference). This approach is of particular
interest in biomedical signal coding [5][6][7].

No bit allocation algorithms can be found in the lit-
erature which minimizes the number of bits to be allo-
cated, with the constraint of maintaining the overall dis-
tortion below a maximum allowable value, and which
takes into account the frequency responses of the ac-
tual filter which implements the subband decomposi-
tion. The solution to this problem is presented in this
paper.

2. OPTIMUM BIT ALLOCATION WITH LOW
SELECTIVITY FILTER BANKS

2.1 Preliminary concepts and definitions

A nonuniform critically sampled filter bank with M sub-
bands is considered. The average number of bits per
input signal sample is given by



R =
M

∑
i=1

µiRi (2)

where, 1/µi is the decimation factor of the i-th sub-
band, and Ri is the number of bits used to code the
corresponding subband samples. The quantization error
variance σ 2

qi
at the i-th subband quantizer is expressed

in (3), where εi is the quantizer performance factor [8]:

σ2
qi

= ε2
i 2−2Riσ2

i (3)

The power spectral density of the quantization noise
is obtained taking into account the transfer function of
the synthesis filters Hi(ω), (i = 1,2, ...,M):

N(ω) =
M

∑
i=1

σ2
qi

µiB
|Hi(ω)|2 (4)

Integrating (4) on the input signal bandwidth (B) the
overall noise power is obtained, σ 2

q :

σ2
q =

∫
B

N(ω)dω (5)

σ2
q =

∫
B

M

∑
i=1

σ2
qi

µiB
|Hi(ω)|2dω (6)

Substituting expression (3) in (6), σ 2
q can also be

written as:

σ2
q =

∫
B

M

∑
i=1

ε2
i 2−2Riσ2

i

µiB
|Hi(ω)|2dω (7)

Defining ci as in expression (8),

ci =
ε2

i σ 2
i

µiB

∫
B
|Hi(ω)|2dω (8)

the overall noise power can also be expressed with
(9):

σ2
q =

M

∑
i=1

ci2−2Ri (9)

The expressions above indicate that the overall
noise power at the output depends on the transfer func-
tion of the filters in the filter bank, which can differ from
ideal in actual applications.

2.2 Problem formulation
The optimum bit allocation procedure is derived from
the minimization of the average number of bits per in-
put signal sample, under the constraint of maintaining
the overall noise power below a given value. This is a
constrained optimization problem, which can be solved
using the Lagrange multipliers method [9].

The function to minimize is the number of bits to
allocate to the subbands, and the constraints make the
overall noise power to remain below the maximum al-
lowable value (σ2

n ):

min f (Ri) =
M

∑
i=1

µiRi (10)

Constraint:

M

∑
i=1

ci2−2Ri −σ2
n ≤ 0 (11)

Another important constraint that must be consid-
ered is Ri ≥ 0.

This problem can also be formulated using vector
notation, considering r = [R1, ...,RM]t :

min f (r) =
M

∑
i=1

µiRi (12)

Constraint:

g(r) =
M

∑
i=1

ci2−2Ri −σ2
n ≤ 0 (13)

The solution to the above formulated problem is ob-
tained minimizing the following function:

L(r,λ ) = f (r)+λg(r) (14)

where λ is the Lagrange multiplier. The vector
r which minimizes (14) is obtained using the Kuhn-
Tucker conditions [9], which state that a relative min-
imum point of L(r,λ ) is obtained with λ ≥ 0 solving
the following system, which consists of the first-order
necessary conditions:

∇ f (r)+λ∇g(r) = 0 (15)
g(r) = 0 (16)

2.3 Solution
The application of the Kuhn-Tucker conditions to the
problem formulated in section 2.2, give rise to the fol-
lowing first-order necessary conditions:

∂L(r,λ )
∂Ri

= µi −λ (2ci2−2Ri ln(2)) = 0, i = 1, ...,M

(17)

M

∑
i=1

ci2−2Ri −σ2
n = 0 (18)

The value of the Lagrange multiplier can be found
from (17):



λ =
µi

2
22Ri

ci ln(2)
(19)

Equation (19) states that the value of λ is non nega-
tive, as required by the Kuhn-Tucker conditions to find
a solution to the problem. Furthermore, this expression
can be combined for different values of i, to obtain a re-
lation between the amount of bits allocated to different
subbands:

Ri = R j +
1
2

log2

(µ jci

µic j

)
(20)

The necessary conditions (18) can be used to obtain
R j. Substituting (20) in (18), the following expression
is obtained:

M

∑
i=1

ci2−2(R j+ 1
2 log2((µ jci)/(µic j))) = σ2

n (21)

This is equivalent to:

M

∑
i=1

ci2−2R j 2
1
2 log2((µ jci)/(µic j)) = σ 2

n (22)

which allows to find 2−2R j :

2−2R j =
σ2

n

∑M
i=1 ci2log2((µic j)/(µ jci))

(23)

The number of bits allocated to the j-th subband is
finally found from expression (23):

R j =
1
2

log2

(
∑M

i=1 c j
µi
µ j

σ 2
n

)
(24)

Substituting c j in expression (24) for expression
(8), and taking into consideration that only integer val-
ues for R j are admissible, the number of bits allocated
to the i-th subband is obtained with the following ex-
pression:

R j =

⌈
1
2

log2

(∑M
i=1 µi

ε2
j σ2

j

µ2
j B

∫
B |Hj(ω)|2dω

σ 2
n

)⌉
(25)

where � � represents the ceiling operator.
Obviously, expression (25) does not avoid the ap-

pearance of negative solutions. When a negative solu-
tion is obtained for a given subband, it must be replaced
by the zero value. After that, expression (20) can be
used to determine the number of bits allocated in the
remaining subbands.

3. RESULTS

In this section, an example of the behavior of the pro-
posed bit allocation algorithm is included. A low selec-
tivity quadrature mirror filter bank (M = 2) is consid-
ered, whose frequency response is represented in figure
1. You can see that the two bands highly overlap, which
makes the application of bit allocation algorithms that
do not consider the frequency responses of the filters in
the filter bank inappropriate.

For the experiment, white noise with uniform prob-
ability density function with zero mean and variance
unity is applied to the filter bank. The subband signals
are uniformly quantized using the number of bits per
subband provided by the algorithm. The target signal
to noise ratio (SNR) varies from 0 to 100dB. Figure 2
shows in dashed line the measured SNR obtained with
the proposed algorithm, and in dotted line, the results
obtained using one bit less. The former line is slightly
above the ideal curve, which means that the obtained
SNR is also slightly higher than the required one. Us-
ing only one bit less, the obtained curve is slightly be-
low the ideal one.

4. CONCLUSIONS

In this paper, the problem of computing the optimum bit
allocation in a subband coder with low selectivity fil-
ters, while maintaining the power of quantization noise
below a given value has been addressed. A low com-
plexity strategy that takes into account the frequency
responses of the synthesis filter bank, is proposed. The
Lagrange multiplier method is used to obtain the opti-
mum bit distribution.

Until now, no bit allocation algorithms can be found
in the literature with a solution to the problem this pa-
per deals with. Several approaches can be found that
minimize the overall distortion with a constrained num-
ber of bits, with or without considering the frequency
responses of actual filters, but no effort has been made
to minimize the number of bits maintaining the overall
distortion below a given value.

The number of bits to be allocated to a subband de-
pends only on the frequency response of the synthe-
sis filter of that subband, on the variance of the cor-
responding subband signal, on the maximum allowed
noise power, and on the decimation factors of all the
subbands.

The proposed solution is suitable for applications
where a given quality must be guaranteed, measured
using some global distortion measurement such as the
PRD (Percent Root-mean-square Difference). This ap-
proach is of particular interest in biomedical signal cod-
ing, for example, in electrocardiogram (ECG) signal
compression.
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Figure 1: Frequency responses of the filters in the filter
bank
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Figure 2: Measured SNR vs. required SNR at the out-
put of the filter bank of figure 1 when the proposed bit
allocation algorithm is applied
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