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ABSTRACT
Blind source separation (BSS) has been successfully ap-
plied in separation of static images from reflections super-
imposed on the desired image by a semi-reflective medium.
In our previous study [1], we have shown simulation re-
sults for the separation of dynamic reflections. Here we
further discuss this problem and show results of experimen-
tal data for separation of dynamic images. We also illus-
trate an application concerned with recovery of images ac-
quired through a semi-transparent cloudy medium. This is
a more complex problem in that the mixtures are not sta-
tionary in space, the mixing coefficients vary in the presence
of clouds, and the mixtures involve also multiplicative and
convolutive components. We apply the three-dimensional
spatio-temporal Sparse ICA (SPICA) method on simulations
of linearly mixed moving landscape, contaminated by the in-
terference of clouds. We then incorporate a nonlinear mul-
tiplicative interaction and examine its effects on the SNR of
the recovered image. We illustrate preliminary promising re-
sults.

1. INTRODUCTION

The problem of recovering a scene contaminated by reflec-
tions has been previously dealt with mostly in the context
of static (i.e. still) images by means of techniques based
on the Independent Component Analysis (ICA) approach
[2],[3] and other methods based on the physics of the prob-
lem [4]. In our previous study [1], we have extended the
Sparse ICA algorithm (SPICA) approach to dynamic images
(i.e. sequences of images), by considering subsequences of
data, that are to a good approximation stationary, as three-
dimensional data structures. We showed that in the case of
simulated mixtures one can achieve good separation. Here
we further discuss the problem of blind separation of mixed
dynamic images and show results of separation of a dynamic
image from reflections, where the data is obtained from an
experimental setup of imaging through a semi-reflective lens
and recorded at two different polarizations. We also consider
the special application of elimination of semi-transparent
clouds from images of landscape observed from an RPV. We
present results of simulations, separating images obtained by
simple mixing models; These results are surprisingly good in
spite of the fact that one of the mixed images, i.e. the clouds,
is rather fuzzy in structure, unlike other type of images that
are usually encountered in problems requiring blind separa-
tion of images. We then discuss the problem of removal of
clouds from landscape images in the context of the more re-
alistic and complicated framework involving also multiplica-
tive and convolutive components. There are only few studies
concerned with cloud removal from images [5],[6]. The mul-

tiple exposure approach reconstructs the landscape by mo-
saicing exposed image segments [6].

2. INDEPENDENT COMPONENT ANALYSIS (ICA)

In problems requiring Blind Source Separation (BSS), an N-
channel sensor signal {xi}N

i=1 is generated by M unknown
scalar source signals {si}M

i=1, linearly mixed together by an
unknown constant N×M mixing matrix, where each source
or mixture is a function of the independent variables {ξi}k

i=1.
In matrix notation, the N-dimensional vector of mixtures, X ,
is equal to the product of the N ×M mixing matrix by the
M-dimensional sources vector, S :

X (ξ1,ξ2, . . . ,ξk) = A · S (ξ1,ξ2, . . . ,ξk). (1)

Under the assumption that the sources are statistically in-
dependent, the BSS method yields an estimate of Ã, the
unknown mixing matrix, without prior knowledge of the
sources and/or the mixing process. The sources are recov-
ered (up to permutation and scale) by using an inverse of the
estimated mixing matrix, provided it exists:

˜S (ξ1,ξ2, . . . ,ξk) = ˜W · X (ξ1,ξ2, . . . ,ξk)

= ˜A −1 · X (ξ1,ξ2, . . . ,ξk), (2)

where ˜W is the estimated ’unmixing’ matrix.

2.1 Sparse ICA (SPICA)
Sparse sources can be easily recovered from their linear mix-
tures using simple geometrical methods [7],[8]. This SPICA
approach is based on the observation that whenever sources
are sparse, there is a high probability that each data point in
each mixture will result from the contribution of only one
source. Consequently, if we plot the N-dimensional scat-
ter plot of the sparse mixtures, wherein each axis represents
one of the mixtures, a co-linear cluster emerges for each
subset of mixtures’ data points that are contributed by one
source only (Figure 1c). Recall that the projection onto the
space of sparse representation decouples the contributions
of the sources to most of the mixtures’ data points; this is
the essence of the implementation of sparsity in the context
of BSS. It can be shown that the coordinates of the vectors
representing the centroids of these clusters correspond to the
columns of the mixing matrix A (Figure 1). Using such geo-
metrical methods, one can relax the condition of statistical
independence.

The simplest way to estimate the mixing matrix is to cal-
culate the orientations of the clusters and select the optimal
M angles from the histogram of angles. Another algorithm



projects the data points onto a hemisphere, then uses cluster-
ing (such as Fuzzy C-means) in order to recover the orienta-
tions [8]. Other methods, such as the well-known Infomax
[9] use a maximum-likelihood-based approach [10]. After
the orientations have been calculated, the sources can be es-
timated by using eq. (2).
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Figure 1: An example of three sparse sources (a) mixed into
two mixtures (b). The orientations of three lines in the scatter
plot correspond to the columns of the mixing matrix.

2.2 Sparse Decompositions

2.2.1 Overcomplete Representations

Natural images and image sequences are not typically sparse.
In order to exploit the geometrical method of SPICA, we
have to first apply a sparsification transformation, and then
apply the geometrical algorithm on the transformed signals.
It has been shown that for a wide range of natural images,
smoothed derivative operators yield a good sparsification
results [3]. However, an overcomplete representation ob-
tained, for example, by the Wavelet Packet transform (WPT)
matches better the specific structure of a given set of images
and thereby yields better sparsification [8]. The latter facili-
tates and improves the estimation of the mixing matrix. The
local nature of the wavelet-type transforms can highlight spe-
cific features of distributions (such as the distinct orientations
in a scatter plot) based on a subset of data points of the trans-
formed signal. Such highly structural distributions are not
clearly present in the highly correlated non-transformed sig-
nal.

2.2.2 WP transform

The Wavelet Packet family consists of the triple-indexed
family of functions:

ϕ jnl(ξi) = 2 j/2ϕn(2 jξi− l) , j, l ∈ Z, n ∈ N
ξ1 ≡ x, ξ2 ≡ y, ξ3 ≡ t
ϕϕϕ jnl=∏

i
ϕ jnl(ξi)

(3)

According to the formalism of the WPT, a signal is re-
cursively decomposed into its approximation (L) and detail
(H) subspaces. In the case of 2D signals, using separable
wavelets, the signal is decomposed into its approximation
and vertical, horizontal and diagonal details sub-images. For
3-dimensional data cube, the signal is decomposed into 8
sub-volumes.

We chose to use a separable transformation, for the sake
of simplicity, by transforming rows first, then columns and
then time (depth) axis. Nonseparable wavelets offer impor-
tant advantages in that they are inherently endowed with

more degrees of freedom that can be exploited in their de-
sign. However, nonseparable wavelets are much more com-
plex to deal with [11] and their application in the context of
sparsification is therefore beyond the scope of this study.

2.2.3 Source Separation using the WPT

After the mixture signals are decomposed into WP-tree us-
ing the WPT [8], we search for the most sparse node. A
quality criterion that assigns high values for sparse nodes and
lower values for less sparse nodes is computed for every node
[8]. Common choices for such quality criteria are entropy or
global distortion. The best node (or the top few nodes) is
chosen and used as input data for the geometrical BSS al-
gorithm. Using the WPT has another advantage: because of
downsampling in the process of the transform, the number
of data points in each node is significantly smaller than the
number of mixture signals data points. This reduction in the
number of data points speeds up the processing.
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Figure 2: Left: a scatter plot of mixtures of two non-sparse
images. Right: the scatter plot of a wavelet packet tree node.
The arrows show the estimated centroid orientations.

3. BSS OF DYNAMIC REFLECTIONS

We first apply our method in a relatively simple physical ex-
ample of separation of dynamic reflections, such as video
recorded through the windshield of a car or the canopy on
an airborne platform. In this example the assumptions of lin-
earity and stationarity are valid. Here, a virtual (reflected)
image is superimposed on a dynamic visual scene. To this
end we extend the study concerned with separation of reflec-
tions from static images [2],[3] to the case of 3D dynamic
images.

In the context of separation of reflections, the BSS prob-
lem usually reduces to the case of M=2 sources. The ob-
served mixture is then given by

x(ξ 1,ξ 2, t) = a11s1(ξ 1,ξ 2, t)+a12s2(ξ 1,ξ 2, t), (4)

where x,s1 and s2 are dynamic images, usually acquired as
video sequences. It is assumed here that the dynamics of
the image and of the superimposed reflections are limited to
planar translation of rigid bodies. The more difficult problem
of non-planar motion and rotation, as well as of non-rigid
distortion are beyond the scope of this paper, and will be dealt
with elsewhere. Likewise, the coefficients a11 and a12 are
assumed to be constant, approximating spatial invariance and
linear mixing [3].

Since the reflected light is polarized, by using a linear po-
larizer, the relative weights of the two mixed video sequences
can be varied to yield N different mixtures of the form:

xn(ξ 1,ξ 2, t) = an1s1(ξ 1,ξ 2, t)+an2s2(ξ 1,ξ 2, t)
: n = 1, . . . ,N . (5)



Thus, we can use two or more video sequences obtained
with different polarizations and separate objects and reflec-
tions. Figure 3 shows frames from video sequences of a real
data experiment in which a dynamic reflection was superim-
posed on a static image. As can be seen, the reflection and
image are successfully separated.

Figure 3: Results of an experiment of blind separation of a
static image from a superimposed dynamic reflection: frames
from one mixture (top), frames from the recovered image
(middle) and superimposed reflection (bottom).

4. SEPARATION OF LANDSCAPE FROM CLOUDS

Images acquired using airborne cameras outfitted on an RPV
are usually contaminated by the interference of clouds. In
this application, it is desirable to extract a clear landscape
view and separate it from the thin semi-transparent layers of
clouds. This problem has hardly been dealt with in the past
[5],[6]. The problem of separation of clouds from landscape
is a more complex problem than the relatively simple one of
separation of reflections, addressed and illustrated in section
3. To begin with, the mixtures are not spatially stationary
since the mixing coefficients vary in the presence of clouds.
Further, combined images recorded above the clouds do not
necessarily reflect simple, strictly linear, mixing. They are
rather obtained by a more complex process involving mul-
tiplicative and convolutive elements, which may affect the
quality of separation. Such a complex process of mixing may
be qualitatively described by:

X = AS +αF (S , S ∗ K ), (6)

where K is a vector of the convolution kernels and F is a
non-linear function of the sources and the convolved sources.

In our studies with reflections and other applications of
BSS, we noticed that our technique of using wavelet-type lo-
calized sparsification transformations such as the WPT ren-
ders the data to become robust with respect to weak nonlin-
earities and nonstationarity. The latter is due to the localized
structure of the data sparsified by such transformations. We
are at the present time in the process of constructing a special
imaging system for the application of separation of clouds.
However, as long as we do not have real data, it is reasonable
to assume that α is small and apply our approach on linear
mixtures of landscape and cloud images. The three images
depicted in the top row of Figure 4 are taken from a sequence
of linearly mixed sequences of a landscape and clouds. The

clouds have a different velocity (in time) relative to the land-
scape. Reconstruction quality was measured by SNR (dB).
The respective results are 4.5dB for the cloud sequence and
16.5dB for the landscape sequence. Although these figures
of SNR do not indicate outstanding results, the visual ap-
pearance of the images is very convincing, considering the
relatively complex structure of the clouds and consequently
the mixtures.

Figure 4: Top: three images from a synthetic mixture movie
of landscape with clouds. Middle: three images from the
movie of one extracted source. Bottom: three images from
the movie of the second extracted source.

Figure 5: Left: a simulated source of clouds image. Right:
the multiplicative mask created from the clouds image.

To better approximate the nonlinear, multiplicative, ef-
fect that comes along with the presence of clouds in the
cloudy areas, we add a mask which accounts for imaging
through a cloudy medium (Figure 5). The mixing is now
performed in the following way:

MIX1 = a11 ·MASK · landscape+a12 · clouds
MIX2 = a21 ·MASK · landscape+a22 · clouds. (7)

The quality of the blind separation is now considerable
compromised due to the incorporation of a multiplicative
process, and the recovered images are in this case charac-
terized by SNR of 1.4dB for the clouds and 14.1dB for the
landscape sequence. Further refinement of the model awaits
the analysis of real data of sequences of landscape images
acquired through a thin semitransparent layer of clouds.



Figure 6: Top: three frames from a video of the recovered
landscape. Bottom: three frames from the video of the re-
covered video of clouds.

5. DISCUSSION

BSS algorithms have been shown to provide powerful means
for blind separation of images in various scenarios where the
mixing is approximately stationary (fixed in space) and lin-
ear. In particular it has been successful in separating images
from superimposed reflections [1],[2],[3], and in separation
of tissues in MRI [12]. However, problems such as recovery
of a landscape imaged through a layer of semi-transparent
medium have not been previously addressed in this context
and have hardly been discussed in the context of other image
processing approaches and algorithms [5],[6]. We show here
that the physics of imaging with two polarizations, success-
fully implemented in separation of an image from superim-
posed dynamic reflections, can be instrumental in the more
complex case of recovery of an image contaminated by the
effects of a layer of cloud present along the pathway of the
imaging device.

The problem of separation of landscape images from
clouds calls for models that are more complex than simple
linear mixing. The combination of blind separation and blind
deconvolution has recently attracted a great deal of interest
in the community of ICA. It is expected that new emerging
results will penetrate the field of image processing and find
new applications. In this study we are in the process of fur-
ther generalizing the approach, by incorporating also hard
nonlinearities in the form of a multiplicative effect. This has
yet to be further studied before we have a better understand-
ing of the advantages and limitations of a generalized BSS
approach. However, preliminary results such as those illus-
trated in the present study appear to be promising enough to
encourage further investigation.

Although the SNR results indicate that the separation
quality is not yet good enough in the case of the non-linear
model that incorporates a multiplicative mask, it seems that
the localized mapping into a space of sparse representation
should better deal with the spatial varying effects introduced
by the map. Since our mapping may be overcomplete and
its only purpose is to estimate the mixing matrix, one may
consider using a combination of two dictionaries; One that
incorporates the specific structure of the landscape, which
in the example used by us may be based on scale-space of
corner detectors. A second dictionary may account for the
fractal nature of cloud structure.

In spite of the less-than-optimal sparsification used
in this preliminary study, the improvement achieved in

the resultant sequence of landscape allows better further
processing of the data by conventional techniques of image
processing, which we have not attempted to use here. We
intend to test the model proposed here for the interference
of the a layer of clouds on real data, using a special imaging
system currently developed by us. In addition to further
refinement of the model and of the sparsifying techniques,
we intend to take advantage also of the fact that in the
scenario under consideration there are areas that are not
covered by clouds. This brings us the idea of performing the
analysis block-wise, using sub-blocks of data (as proposed
in [3]). Mosaicing of segments reduced from multiple
exposures [6] can also be incorporated and further improve
our results.
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