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Abstract
We address the problem of downlink throughput improve-
ment for IEEE 802.11a/g systems by using a modified access
point (AP) equipped with multiple antennas. The main re-
striction is that standard terminals should not be modified
in any way. An alternating time-offset space division multi-
ple access (SDMA) solution is proposed to overcome restric-
tions imposed by the legacy terminals requirement. In this
paper we concentrate on channel estimation over acknowl-
edgement (ACK) bursts and effect of imperfections such as
non-ideal channel reciprocity and delayed channel estimates.
Simulations based on channel models approved by the IEEE
802.11 Standard Group demonstrate that a near doubling of
downlink capacity can be achieved in a conference room en-
vironment in the case of low levels of channel reciprocity
errors at the AP.

1. INTRODUCTION

Space division multiple access (SDMA) is a widely rec-
ognized smart antenna technology [1]. This technique al-
lows a number of spatially separated users to share the same
time-frequency channel. An important SDMA feature is
that it is applicable to APs equipped with multiple anten-
nas and single-antenna terminals. Different aspects of the
SDMA technique have been addressed in the literature, in-
cluding channel condition effects, signal processing aspects
and MAC-level issues. Time division duplex (TDD) systems
are especially suitable for SDMA application since the up-
link (UL) channel information can be used during downlink
(DL) data transmission [2]. In spite of many readily avail-
able general PHY and MAC-level SDMA algorithms, their
application to specific systems (e.g., WLAN) is not straight-
forward. The problem is that specific features of a particu-
lar system, e.g., a data slot structure or specific UL/DL pro-
tocol, may significantly complicate SDMA implementation.
For example, specific pilot assignment for different users and
sub-carriers in an OFDM/SDMA system [3] is not compati-
ble with the current OFDM/WLAN standards such as IEEE
802.11a/g and HIPERLAN/2.

A possibility of introducing an SDMA mode to a WLAN
system based on the IEEE 802.11a/g standards [5], subject
to the constraint that the AP may be modified but the stan-
dard terminals cannot be changed (legacy terminals), is in-
vestigated in [6], [7]. In these papers we have proposed an
alternating time-offset AP transmission scheme for two-user
DL SDMA in a conference room environment.

Part of this work has been done in the context of the IST 6FP OBAN
project.

In this paper we focus on signal processing aspects of
this problem such as channel estimation over ACK bursts to
support DL SDMA transmissions, and the effect of imper-
fections such as non-ideal channel reciprocity and delayed
channel estimates. MAC-layer issues are addressed in [7]
and briefly summarized in Section 4. The efficiency of the
proposed solution is evaluated in a conference room environ-
ment assuming a channel reservation for the SDMA mode.
Simulations are based on the standard IEEE 802.11 chan-
nel model [8], [9], which includes all the main propagation
effects such as delay spread, path loss, shadowing, spatial
correlation, Doppler, fluorescent light effects, etc.

The problem formulation is given in Section 2. The alter-
nating time-offset DL SDMA solution is presented in Section
3 including the uplink ACK reception algorithm and channel
estimation procedure. The system and simulation assump-
tions and results are presented in Section 4. Conclusions are
stated in Section 5.

2. PROBLEM FORMULATION

The narrowband transmitted and received signals (e.g., for
each separate sub-carrier of an OFDM system) for the basic
DL SDMA operation of a group of� users can be expressed
as follows [1],[2]:
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where � is the �� � � � matrix of the transmitted signals
(���E����� � � �� ), � is the number of symbols, � is
the signal power, �� is the �� ��� unit matrix, � is the
����� weight matrix,� is the ���� �matrix of the com-
bined transmitted signal, �� is the ���� � vector of the sig-
nals received by the�th terminal, �� is an��� vector rep-
resenting the propagation channel from the � AP antennas
to the single antenna at the �th terminal, and �� is a ���� �
AWGN noise vector at the �th terminal with variance ��.

The conventional diagonally loaded zero-forcing
(“MMSE”-type) solution for the weight matrix is as follows:
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where � is the �� ��� channel matrix of rows ��
�
� � ���

�

and � is the regularization coefficient, which is normally se-
lected as �� ��	� . Normalization in (3) is required to keep
the total transmit power constant.



The basic SDMA solution (3)-(4) is actually the simplest
one and can be modified in many ways [4]. Following the
main objective of this paper, we consider the possibility of
applying this basic solution taking into account the restric-
tions imposed by the IEEE 802.11 a/g specifications.

Direct application of the conventional simultaneous DL
SDMA transmission scheme to an AP is difficult because of
the IEEE 802.11a/g requirements for ACKs. A simultaneous
DL SDMA transmission will result in each terminal respond-
ing, after a short interframe space (SIFS) interval of 16 
�,
with an ACK burst. In this case, the ACK bursts almost com-
pletely overlap in time and mutually interfere upon arrival
at the AP. It is important to note that the ACKs are not com-
pletely synchronous since each maintains a SIFS period of 16

� only to within some finite accuracy. Each ACK slot con-
sists of synchronization, pilot, and data segments [5]. Apart
from confirming the successful reception of the MAC packet
data units (MPDUs) (as in conventional operation), the pilot
segments of the ACKs are needed to derive fresh estimates of
the propagation channels in preparation for the next SDMA
transmission. The overlap of the pilot segments severely im-
pedes channel estimation. The overlap of the synchroniza-
tion segments also severely degrades synchronization itself.
Note that, according to the IEEE 802.11a/g specifications, all
ACKs contain the same pilot and synchronization symbols.
This precludes the use of any form of joint channel estima-
tion in the case of simultaneous DL SDMA transmission.

In this paper we consider a two-user case, apply a time-
shifted DL SDMA transmission, and concentrate on channel
estimation over ACK bursts and the effect of imperfections
such as non-ideal channel reciprocity and delayed channel
estimates.

3. ALTERNATING TIME-OFFSET DL SDMA

3.1 Time-offset transmission

The particular case of two SDMA users in a group can be
addressed by means of time-shifted SDMA transmission [6].
The solution is to impose a time-offset between the SDMA-
transmitted MPDUs, causing a similar time offset in the ACK
responses of the two terminals, as depicted in Fig. 1. This
reduces the interference between the ACKs, in particular dur-
ing the critical synchronization and pilot intervals of ACK1.
In principle, the maximum allowed value of this offset is 16

� because simultaneous transmission and reception are not
allowed at the AP or terminal. As will be seen below, it is
important that the ACK2 symbols interfering with ACK1 are
known a priori (i.e., correspond to the synchronization and
pilot symbols). This implies that the minimum allowed offset
is restricted as well

��ACK� ��sync� ��pilot �
��offset � SIFS� (5)

where ��ACK � �����	�
��
�, ��sync � ��pilot � 	 
� are
the durations of the ACKs, synchronization, and pilot inter-
vals respectively. In our simulations in Section 4, we as-
sume ��ACK � ��
�, which corresponds to 16-QAM data
signalling, and select ��offset � ��
�.

3.2 ACK Recovery

The two partially overlapping ACK bursts shown in Fig. 1
may be recovered via the procedure summarized below. Fur-
ther details are given in [6], [7].

� Step 1. Sample the received signal synchronously for
ACK1.

� Step 2. Estimate an oversampled replica of ACK2 using
interpolated signal at the synchronization and pilot inter-
vals using the estimated channel for the time-shifted user.

� Step 3. Perform fine synchronization for oversampled
ACK 2 and subtract it from the input signal to get the
cleaned up signal for ACK1 recovery.

� Step 4. Recover ACK1 by means of a conventional beam-
forming receiver over the cleaned input signal; if there is
an error, then the whole SDMA packet is lost.

� Step 5. Oversample the input signal and the whole re-
covered ACK1 using the estimated channel for the non-
shifted user.

� Step 6. Subtract the oversampled ACK1 from the over-
sampled input signal according to Step 3.

� Step 7. Recover ACK2 by means of a conventional beam-
forming receiver over the cleaned up input signal.

3.3 Alternating channel estimation

Both channels ��� and ��� can be estimated via the cleaned
up input signals 	� and 	� obtained at Steps 3 and 6 respec-
tively. However, since the non-delayed ACK1 is cleaned up
with more reliability than the delayed ACK2, the estimate of
��� derived from 	� is also more reliable than the estimate of
��� derived from 	�. One of the reasons for this difference
is that according to Step 6, 	� is based on the oversampled
replicas of both the input signal and ACK1, but 	� involves
only one oversampled replica of the synchronization and pi-
lot segments of ACK2. Another reason is that while pilot
symbols are transmitted on all 52 OFDM sub-carriers accord-
ing to the 802.11 specifications (the rest of the 64 sub-carriers
are not used for transmission), the synchronisation symbols
are transmitted only on 12 (roughly equi-spaced) sub-carriers
out of the total of 52 OFDM sub-carriers. This means that
the synchronization segment of ACK2 interferes with only
12 sub-carriers of the pilot segment of ACK1. In contrast,
the 52 sub-carriers of the data segment of ACK1 interfere
with all 52 sub-carriers of the pilot segment of ACK2. This
situation is illustrated in Fig. 2 for ��offset � ��
�, which
satisfies inequality (5). The poor quality of ��� estimates can
have a severe impact on the successful application of SDMA.

The above issue may be addressed by estimating only the
channel associated with the reliably-recovered non-delayed
ACK1. The identity of the user associated with the non-
delayed MPDUs and ACKs should then be switched for suc-
cessive SDMA transmissions. This is depicted in Fig. 3
for terminals A and B. Alternating of the users allows chan-
nel estimation for both users in two consecutive successful
SDMA slots even if only one non-shifted pilot interval is
used for estimation. Although this scheme reduces the up-
date rate of the channel estimates, this is more than compen-
sated for by the improved quality of the channel estimates.

The proposed channel estimation procedure is as follows:
Step 1. Apply the conventional channel estimation pro-

cedure over the pilot interval:

����� � 	���	�p���  � ��s� (6)

where �p�� is the pilot simbol at the  th sub-carrier
and ��s is the set of all working subcarriers � �
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 � � ��	� except the ones used for synchronization
�s � �	��������	
�����	���� [5].

Step 2. Estimate the channel at the synchronization sub-
carriers using interpolation:

����� � INTERP
�
������� � � ��s

�
� � �s� (7)

where INTERP��� is the interpolation operator based, for ex-
ample, on the spline technique.

Another version of Step 2 can be developed by estimat-
ing the channel at the synchronization sub-carriers over the
synchronization interval, which is not affected by the ACK2
interference in the time-offset SDMA, as shown in Fig. 1.

4. SIMULATION RESULTS

We simulate a conference room environment, where all ra-
dios can hear each other and packet errors appear mainly
because of non-ideal SDMA rather than interference at ter-
minals due to hidden terminals. Our main assumptions are
as follows:

System assumptions: 1). The channel can be reserved for
two users for the whole SDMA session. 2). A non-SDMA
initialization is applied at the beginning of the SDMA ses-
sion, which consists of conventional (without beamforming)
successive DL transmissions to the SDMA users followed
by conventional UL channel estimation at the ACK recep-
tion stage. 3). The backoff interval defined in [5] does not
increase after receiving an erroneous SDMA packet; instead,
it leads to a non-SDMA initialization similar to the one at the
beginning of the SDMA session.

Simulation assumptions: 2.4 / 5.2 GHz frequency range;
16-QAM, convolutional encoding with 3/4 code rate; 4320
information bit packets (35 OFDM symbols or 140 
s total
slot duration); 10 ms SDMA session; �� separation between
AP antennas, �� separation between terminals; “B” and “D”-
channels defined in [8], [9] with 15 ns and 50 ns RMS delay
spread respectively with fluorescent effects (“D”-channel);
(3-9) m and (5-15) m distance range for the “B” and “D”
cases respectively; 16 dBm transmit power; ��� dBm noise
power; asynchronous ACK arrivals with (16�0.5) 
s delay;
� � �� oversampling factor in Steps 2 and 5 in Section 3.2.

Simplification assumptions: ideal (linear) front-end fil-
ters at AP and terminals; zero frequency offset; no quan-
tization effects; perfect receiver synchronization at AP and
terminals.

Further details on system and simulation assumptions are
given in [7].

Non-ideal channel reciprocity is simulated similarly to
[3]. The RMS values of amplitude and phase errors for ter-
minals are fixed at 0.7 dB and �Æ respectively. The RMS
values of amplitude and phase errors for the AP are variable
as indicated in Fig. 4-6.

The following algorithms are simulated:
Benchmark 1: Conventional non-SDMA with single

transmit antenna.
Benchmark 2: Non-SDMA with beamforming at AP.
Benchmark 3: SDMA with ideal ACK receiver.
Alternating time-offset SDMA with �offset � ��
�.
At this stage we do not consider any spatial scheduling,

i.e. we randomly select two users and start an SDMA session
at every simulation trial. The throughput is measured as the

total number of bits successfully transmitted during a 10 ms
SDMA session.

Fig. 4-5 show CDFs of the overall throughput for two and
three-antenna APs in the “B”-channel 2.4 GHz environment
and Fig. 6 gives the performance of a three-antenna AP in the
“D”-channel 5.2 GHz case. Benchmark 2 demonstrates some
performance improvement because of the increased signal-
to-noise ratio (SNR) in the non-SDMA beamforming case.
Benchmark 3 suggests that in the case of an ideal channel
reciprocity, the throughput can be doubled in the consid-
ered environment for almost all randomly selected channels.
The proposed SDMA solution demonstrates results close to
Benchmark 3 for most of the trials. The CDF shift of the al-
ternating time-offset solution (with respect to Benchmark 3)
is due to the introduced time-offset. The non-ideal channel
reciprocity causes some performance degradation, especially
in the two-antenna 2.4 GHz “B”-channel case in Fig.5 as well
as in the three-antenna 5.2 GHz “D”-channel case in Fig.6,
depending on the AP channel calibration errors. These re-
sults can be useful for formulation of the AP radio frequency
requirements.

5. CONCLUSIONS

The proposed alternating time-offset SDMA solution sup-
ports legacy terminals but requires some modifications to the
transmission protocol at the AP. The main features of the
IEEE 802.11a/g standards, such as channel conditions, trans-
mission protocol, and data and ACK slot structures, have
been taken into account. The downlink capacity in a confer-
ence room environment is almost doubled for low levels of
channel reciprocity errors at the AP, as demonstrated by sim-
ulations based on the channel models approved by the IEEE
802.11 Standard Group.
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Figure 3: Alternating time-offsed SDMA.
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Figure 4: Throughput performance for two users and two-
antenna AP in the “B”-channel 2.4 GHz environment.
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Figure 5: Throughput performance for two users and three-
antenna AP in the “B”-channel 2.4 GHz environment.
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Figure 6: Throughput performance for two users and three-
antenna AP in the “D”-channel 5.2 GHz environment.
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