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ABSTRACT

Many multichannel algorithms for blind channel identifica-
tion and deconvolution rely on the identifiability condition
that the channels are coprime, i.e. they do not have common
zeros. This property has not received much attention in the
literature, partly due to the difficulty of factoring the high or-
der channel polynomials that arise in room acoustics. In this
paper we propose a novel method for adaptive identification
of the common roots of two polynomials. The algorithm is
further used to gain some insight into the problem of com-
mon zeros in the context of adaptive blind channel identifi-
cation. Simulation results are provided to demonstrate the
identification and the detection of common zeros. We also
consider approximately common zeros and show that they
do not have to be exactly identical in order to degrade the
adaptive channel identification performance.

1. INTRODUCTION

It was shown in [1] that multichannel blind system identifi-
cation is dependent on the condition of two channel transfer
functions being coprime, i.e. that they do not have any zeros
in common. This prerequisite has been the basis for many
blind channel identification algorithms e.g. [2, 3, 4] and also
for multichannel inversion [5]. Despite its significance this
property has not received much attention in the literature.
One reason for not studying the common zero problem is the
difficulty of factoring high degree polynomials such as those
arising in acoustic signal processing.

In this paper, we propose a new method for adaptive and
exact identification of the common roots between two poly-
nomials without having to factor the polynomials. This is
a two step approach where in the first step the distinct zero
components of the two polynomials are identified blindly fol-
lowed by the second step consisting of the (non-blind) esti-
mation of the common zeros. This can also be used repeat-
edly to detect the number of common zeros. Furthermore,
we apply our algorithm to investigate how close two roots
have to be in order to be detected as common, which appears
to not necessarily be only when they are identical. As a bi-
product of this, it is demonstrated that the performance of
the adaptive blind channel estimation algorithms is degraded
severely when the zeros between two channels get close.

The idea of detecting and identifying the common roots
of polynomials without having to factor them has been of
interest for many years in mathematics and control systems
theory. Mainly the interest has been in binary decisions of
whether or not two polynomials are coprime and methods

utilizing the Sylvester matrix of the polynomial coefficients
are commonly applied [6]. An approximate common factor
estimation and detection method was proposed in [7] and was
recently extended further to the detection and identification
of common roots in more than two polynomials [8].

The remainder of this paper is organized as follows. In
Section 2 we formally introduce the problem of identification
of the common roots in polynomials from a signal process-
ing perspective. Section 3 presents the new two-step adap-
tive algorithm for common root detection and identification.
In Section 4, simulation results are provided to demonstrate
the proposed algorithm both for the cases of known and un-
known number of common roots. Additionally, results are
provided showing the effects of the distance between zeros
on the adaptive blind channel estimation algorithm. Finally,
in Section 5 conclusions are drawn from this investigation.

2. PROBLEM FORMULATION

For this study, a two-channel linear time-invariant system
with a single common input is considered for reasons of clar-
ity. The principles presented here can be straightforwardly
extended to the general M-channel case. In the noiseless
case, the relationship between the input, x(n), the mth chan-
nel impulse response, hm(n), and the mth channel output,
ym(n), is given by:

ym(n) = hm(n)∗ x(n), m = 1,2 (1)

or equivalently

Ym(z) = Hm(z)X(z), m = 1,2 (2)

where Ym(z), Hm(z) and X(z) are the z-transforms of ym(n),
hm(n) and x(n) respectively and * denotes convolution.
Given the input and the output sequences, we would like to
find the zeros that are common to both transfer functions,
H1(z) and H2(z).

Let HC(z) denote the component with the roots common
to both transfer function polynomials and let H ′

m(z) denote
the characteristic zeros component of the mth channel, i.e.
those zeros contained in H1(z) but not in H2(z). The transfer
functions in (2) can now be written as:

Hm(z) = HC(z)H ′
m(z), m = 1,2 (3)

where deg[H ′
m(z)] 6 deg[Hm(z)]. Thus, the problem is to de-

tect the number of common zeros, deg[HC(z)] and also to
identify the common roots component, HC(z).



3. ADAPTIVE COMMON ROOT ESTIMATION

In this Section, we derive the new method for identification
of common roots. This is done in two steps. First, the com-
ponents of the impulse response that do not contain common
roots are blindly identified. Next using these estimates, the
common roots part is found.

3.1 Step 1: Estimating the characteristic root compo-
nents

Let us assume that the number of common roots is known,
which is not true in practice and a method for detecting the
number of common roots is provided at the end of this sec-
tion. By substituting (3) into (2), the system outputs can be
written:

Y1(z) = X(z)HC(z)H ′
1(z) = XC(z)H ′

1(z),

Y2(z) = X(z)HC(z)H ′
2(z) = XC(z)H ′

2(z), (4)

where XC(z) = X(z)HC(z).
Since the two transfer functions H ′

1(z) and H ′
2(z) do not

contain any common zeros, we can identify them blindly us-
ing, e.g. the adaptive multichannel LMS (MCLMS) algo-
rithm [3, 4]. The error signal based on the cross-relation be-
tween the channels [1] can be formulated using the portions
of the transfer functions with the distinctive zeros as [3]:

ẽ(n) = yT
1 (n)ĥ′

2(n)−yT
2 (n)ĥ′

1(n), (5)

where ym(n) = [y(n) y(n− 1) . . . y(n− L′ + 1)]T is the in-

put vector, ĥ′
m(n) = [ĥ′m,0(n) ĥ′m,1(n) . . . ĥ′

m,L′−1(n)]T are the

estimates of h′
m at time n. L′ is the length of the channels

h′
m and is the difference between the full channel length, L

and the common zeros component, LC. A priori knowledge
of L is assumed, which is common practice in blind chan-
nel estimation. Consequently, both impulse responses can be
estimated simultaneously by minimizing the squared error:

ĥ′ = arg min
ĥ′

J̃(n), subject to ‖ĥ′‖ = 1 (6)

where J̃(n) = E
{

ẽ2(n)
}

is the cost function with E {·} being
the expectation operator. The constraint is imposed in order
to avoid the trivial estimate of zero elements.

The channel estimate can be obtained adaptively using
the following update equation [3]:

ĥ′(n + 1) =
ĥ′(n)−2µhpẽ(n)[y(n)− ẽ(n)ĥ′(n)]

‖ĥ′(n)−2µhpẽ(n)[y(n)− ẽ(n)ĥ′(n)]‖
, (7)

where y(n) = [yT
1 (n) yT

2 (n)]T are the concatenated input

vectors, ĥ(n) = [ĥ
′T
2 (n) − ĥ

′T
1 (n)]T are the impulse response

estimates and µhp is a small positive adaptation step size.
Note that the normalization results from the constraint in
(6). It has been shown in [3] that this algorithm converges
in the mean to the correct channel up to a common scaling
factor when the transfer functions are coprime. Moreover,
this adaptive minimization is equivalent to finding the eigen-
vector corresponding to the smallest eigenvalue in the data
matrix using either singular value decomposition on the data
matrix itself or eigenvalue decomposition on the input co-
variance matrix [9]. However, the adaptive algorithms are
more computationally efficient.

3.2 Step 2: Estimating the common root components

We can now use the channel estimates obtained from (7) to

generate the intermediate sequences x′1(n) = x(n)∗ ĥ′1(n) and

x′2(n) = x(n)∗ ĥ′2(n). The common zero component, hC(n),
can then be found by estimating y1(n) and y2(n). Based on
this, the estimation error at the mth channel can be written:

em(n) = ym(n)−x
′T
m (n)ĥC, m = 1,2 (8)

where x′
m(n) = [x′m(n) x′m(n−1) . . . x′m(n−LC + 1)]T is the

input vector at time n, ĥC = [ĥC,0 ĥC,1 . . . ĥC,LC−1)]
T is the

vector of the estimated common zero component and LC =
deg[HC(z)]+ 1 is the length of hC(n).

Using both estimation errors, a cost function can be for-
mulated as follows:

J(n) = E
{

e2
1(n)+ e2

2(n)
}

. (9)

The common zeros component of the two transfer func-
tions can thus be found by minimizing the cost function in

(9) with respect to ĥC:

ĥC = arg min
ĥC

J(n). (10)

We next deploy a least mean square (LMS) adaptive al-
gorithm [10] to solve the stated minimization problem and
thus, to efficiently estimate the common zeros component.
The iterative update of the estimated coefficients is written:

ĥC(n + 1) = ĥC(n)−
1

2
µhc∇J(n) (11)

where µhc is the adaptation step size and ∇ is a gradient op-
erator. In order to find the gradient we take the partial deriva-

tives with respect to each component in ĥC:

∇J(n) =
∂J(n)

∂ ĥC

= E

{

∂e2
1(n)

∂ ĥC

+
∂e2

2(n)

∂ ĥC

}

= E

{

2
∂e1(n)

∂ ĥC

e1(n)+ 2
∂e2(n)

∂ ĥC

e2(n)

}

= −2E
{

x′
1(n)e1(n)+x′

2(n)e2(n)
}

. (12)

Inserting the estimation errors in (8) into (12) we arrive
to the following expression for the gradient:

∇J(n) = −2(p1 +p2)+ 2(R1 +R2)ĥC, (13)

where Rm = E {x′
m(n)x

′T
m (n)} is the autocorrelation matrix

of the input signal and pm = E {x′
m(n)ym(n)} is the cross-

correlation between the input and the desired output.
For the LMS adaptive filter, the instantaneous estimates

of the autocorrelation matrix, R̂m = x′
m(n)x

′T
m (n), and the

cross-correlation vector, p̂m = x′
m(n)ym(n) are considered.

Substituting these into (13) we arrive to the instantaneous
gradient estimate:

∇̂J(n) = −2
(

x′
1(n)e1(n)+x′

2(n)e2(n)
)

. (14)



-2 -1 0 1 2

-2

-1

0

1

2

Real Part

Im
a
g

in
a
ry

 P
a
rt

Figure 1: Channel zeros for channel 1 (circles), channel 2
(squares) and the common zeros (triangles).

Finally, substituting (14) into (11), we obtain the coefficient
update equation:

ĥC(n+1) = ĥC(n)+ µhc(x
′
1(n)e1(n)+x′

2(n)e2(n)). (15)

This far it has been assumed that the order of the common
zeros component is known. Since this is not the case in prac-
tice, we propose that the identification can be performed re-
peatedly starting with the full channel length L then reducing
this by 1 at each repetition and monitoring the mean squared
error cost function, J. In this way, we start with an initial as-
sumption of no common roots and then increment the num-
ber of common roots for each subsequent repetition. The true
number of common roots is indicated when the mean square
error is minimum as will be demonstrated by our simulation
results.

4. SIMULATIONS

In this Section, simulations and results are provided to
demonstrate the proposed algorithm. As a performance
metric, the normalized projection misalignment (NPM) was
used, which is defined as follows [11]:

NPM(n) = 20log10

(

‖ε(n)‖

‖h‖

)

, (16)

with

ε(n) = h−
hT ĥ(n)

ĥT (n)ĥ(n)
ĥ(n),

where h = [hT
1 hT

2 ]T is the composite channel vector and

ĥ(n) = [ĥT
1 (n) ĥT

2 (n)]T is the composite vector of the chan-
nel estimates. Using this measure only the misalignment is
accounted for, ignoring the effect of the arbitrary constant
[11].

For the first experiment, we used a system comprising
two random channels of length L = 32 with eight known
common roots, i.e. LC = 9. The channels zeros are shown
in the z-plane plot in Fig. 1, where the characteristic roots
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Figure 2: Cost function after n = 200000 iterations vs. esti-
mated number of common zeros deg[HC(z)].

Component Estimation Convergence to
NPM(n) = −60dB

Characteristic zeros n = 19644
Common zeros n = 787

Table 1: Number of iterations, n, required for the algorithm
to converge to NPM =−60 dB for a channel of length L = 32
and with 8 common roots.

for channel one are marked with circles, those for channel
two with squares and the common roots with triangles. It
was explicitly assured that the minimum inter-channel sep-
aration between roots satisfies ∆i > 0.1, ∀i, where ∆i =
min{|z1(i)−z2|} , i = 0,1, . . . ,L−2 is the distance between
the ith zero in the first transfer function, z1(i), and any
other zero of the second transfer function, z2, with zm =
[zm(0) zm(1) . . . zm(L− 2)], m = 1,2 being a vector of the
zeros in channel m.

The algorithm was run using µhp = 10−5 for the blind
identification and µhc = 0.2 for the common zeros estima-
tion. We used white Gaussian noise to excite the system un-
der consideration. The results are summarized in Table 1
where it is shown that the the blind channel identification
stage converged, in terms of NPM, to −60 dB in 19644 it-
erations while the second part, the common root estimation
adaptive filter converged to −60 dB in 787 iterations. It is
also important to note that the blind channel estimator would
continue to converge, while the common roots identification
has a convergence floor depending on the accuracy of Step 1.

Subsequently, we investigated the case where the order
of the common zeros component is unknown and how the
number of common roots can by detected by repetition. The
correct number of common roots gives the minimum mean
squared error in the common roots identification algorithm.
Using the same channels in Fig. 1, we repeatedly ran the al-
gorithm increasing the assumed number of common zeros
each time. The algorithm was let to run for n = 200000 itera-
tions at each repetition. The result is shown in Fig. 2 where it
can be seen that the mean squared error after convergence is
minimum for 8 common zeros, which is the correct answer.

Finally, we examined how close two zeros have to be in
order to be detected as common by the algorithm. For clar-
ity, different channels were used here with only two com-
mon zeros as shown in Fig. 3 where the characteristic roots
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Figure 3: Channel zeros for channel 1 (circles), channel 2
(squares) and the common zeros (triangles).

for channel one are represented by circles, those for chan-
nel two with squares and the common roots with triangles.
The inter-channel roots distance was set to ∆i > 0.2, ∀i.
Keeping all the remaining zeros fixed, the common zeros
were separated to a distance of ∆z = 0.2 and then moved to-
wards each other at the steps ∆z = 10−γ for γ = 1,2, . . . ,6.
∆z = |zc1( j)− zc2( j)|, j = 0,1, . . . ,LC −2 is the distance be-
tween the ‘common zeros’ of the two channels. The result
is shown in Fig. 4. It is interesting to note that zeros which
are common to within ∆z = 0.01 can be correctly identified
as ‘common’. This gives rise to two interesting points. First,
our algorithm would be resistant to small perturbations of
the common zeros of two polynomials. Second, the identi-
fication of the full length channels is severely degraded at
that distance. The latter agrees with the result for an ill-
conditioned channel in [3].

5. CONCLUSION

We have proposed and derived a novel approach for finding
the common roots in polynomials using adaptive filters in a
signal processing framework. The most attractive feature of
this method lies in its ability to identify the components due
to the common roots of two polynomials without having to
factor these. It was demonstrated by simulations that this ap-
proach can accurately detect the number of common roots
and the impulse response of these components. From our
results two interesting observations were brought forward.
First, it appears that the accuracy of blind channel algorithms
is strongly affected by the distance of zeros and that two ze-
ros do not have to be exactly equal to be considered common
in adaptive blind channel identification. Secondly, this same
feature makes the common root detection algorithm robust
to perturbations that result in small separation of the roots
that should otherwise be considered common. The proposed
techniques can be applied to study the impact of common
zeros on blind channel identification resulting in a better un-
derstanding and improvement of blind channel estimation al-
gorithms.
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Figure 4: Misalignment after convergence vs. ‘common
zero’ separation for a) the common zero estimation algorithm
and b) blind estimation of the full channel.
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[7] P. Stoica and T. Söderström, “Common factor detection
and estimation,” Automatica, vol. 33, no. 5, pp. 1985–
1989, May 1997.

[8] M. Agrawal, P. Stoica, and P. Ågren, “Common factor
estimation and two applications in signal processing,”
Signal Process., vol. 84, no. 2, pp. 421–429, Feb. 2004.

[9] S. Gannot and M. Moonen, “Subspace methods for
multi-microphone speech dereverberation,” EURASIP
Journal on Applied Signal Processing, vol. 2003,
no. 11, pp. 1074–1090, Oct. 2003.

[10] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Sad-
dle River, N.J.: Prentice Hall, 2001.

[11] D. R. Morgan, J. Benesty, and M. M. Sondhi, “On
the evaluation of estimated impulse responses,” vol. 5,
no. 7, pp. 174–176, July 1998.


	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Patrick A. Naylor
	Jacob Benesty
	Nikolay Gaubitch



