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ABSTRACT 

 
The wavelet transform is a very powerful tool for image 

coding for which the quality of the compression is depending 
on the choice of the filter banks associated to the wavelet. 
These filters can be characterized by two indices: a spatial 
index related to their significant support and a frequency index 
related to their aliasing.  

This work explores the connection between a quality 
criteria and these two indices for a given image family. Two 
useful applications are presented: in the first one a neural 
network allows us to deduce the best filter bank for a given 
image. In the second one a quality criterion for a new image is 
estimated knowing the filter bank. 
 

1. INTRODUCTION 
 

In compression schemes, the Discrete Wavelet Transform 
(DWT), used in standard JPEG2000, allows important 
compression ratios without artifacts (blocks effect) as observed 
in the Discrete Cosine Transform (DCT). 

In the Wavelet Transformation (WT) the choice of the 
associated filter bank is very important and directly related to 
the efficiency of the compression. Both the coding algorithm 
and the evaluation of the compression quality are 
computationally heavy, thus we have to cape with a still opened 
question: for a selected filter bank, is it possible to predict the 
compression quality? In other words: is it possible to estimate a 
quality criterion without making the compression by itself? 

Our study is based on a former work [1] for which two 
indices characterize a filter bank: a frequency index If and a 
spatial index Is. Here, the relation between Is, If and quality 
criteria of compression is explored, then a Radial Basis Neural 
Network (RBNN) is implemented to predict this quality either 
for a new filter bank or for a new image.   

This paper is organized as follows: in section 2 the basic 
compression scheme is briefly remained as well as criteria of 
coding performance. In section 3, the prediction of compression 
quality is related to spatial and frequency indices and is 
approximated with the RBNN. Section 4 is dedicated to 
applications wherein a RBNN is used as a predictor. Section 5 
summarizes our remarks and suggests future research direction 
and improvements. 

 
2.   COMPRESSION SCHEME 

 
2.1 Description of the compression scheme 
 
The traditional diagram of image coding by DWT consists of 
three basic steps (Fig. 1).  
• The DWT decorrelates information in the original image 

leading to a new form of information supporting a more 
efficient compression. 

• The quantization step of the DWT coefficients restricts 
them into a limited series of values i.e. removes 
information considered to be useless. Thus this process is 
an irreversible one. 

• The entropy-coding step assigns to each quantified 
coefficients a code as shorter as possible. Then the total 
available budget of bits should be distributed on the 
different subbands of the image according to the specified 
compression ratio. This procedure is called bits allocation; 
and literature gives various approaches to solve this 
problem [2, 3],… 

 
The image decompression follows an inverse procedure. 

For each step above, the selected algorithm is very important 
and has an effect on coding quality, in this study we restrict our 
interest to the first step. 

 
2.2 Estimation of the compression quality 

 
When an irreversible image compression method is 

applied, it becomes useful to measure its performance in order 
to optimize it. Numerous papers introduce various objective and 
subjective metrics; our work deals with the following criteria:  
 
• The Root Mean Square Error RMSE (equation (1)) defined 

between the original image pixels I(m, n) and 
decompressed image pixels Î(m, n) with (0 ≤ M ≤ m-1, 0 ≤ 
N ≤ n-1). 

• The Peak Signal to Noise Ratio PSNR given by equation 
(2) where 2R-1 is the maximum gray level number. 
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When the original and the decompressed images are 
identical, the MSE is null while the PSNR tends towards 
infinity. In most cases, a PSNR greater than 30 db is considered 
as leading to a correctly reconstructed image.  
 

3.    COMPRESSION QUALITY PREDICTION 
 

The prediction of the compression quality is not 
sufficiently evoked in the literature; even so it is of capital 
interest in the dynamic coding schemes for which an adapted   
coding algorithm is dynamically selected from a set of 
predefined algorithms. This selection is computationally heavy,  



 
 
 
 
 
 
 
 
 
 
 
 
 
since the evaluation of the coding quality is an expensive 
operation, which requires performing coding, decoding, then 
comparison between original and decompressed image. Thus it 
is interesting to predict the compression quality without 
performing the compression by itself. 
 
3.1 Choice of wavelet basis for compression 
 

Several criteria influence strongly wavelet basis 
performances for image coding: vanishing moments number of 
the mother wavelet, mother wavelet regularity, phase linearity 
of the associated filters, size of filters support… Some of these 
criteria are mutually inconsistent and cannot be found  in the 
same wavelet, thus many recent works [5-8] tried to identify the 
wavelet basis which optimizes the best combination of these 
criteria. In our approach the performances of the filters are 
globally characterized with two indices as defined below. 
 
3.2 Indices Is and If   

 
The filter bank of a wavelet consists of a low-pass filter h 

and a high-pass filter g. For the needs of this current work, it is 
characterized by two indices: 
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The spatial index is inspired by the variance formula, 
which measures data dispersion around the average value. It 
characterizes the filter bank in the spatial domain from the 
significant support of the convolution of the low-pass and high-
pass filters. When the wavelet order is incremented, the size of 
the significant support of the convolution increases and so does 
the spatial index. 

The frequency index of the filter bank is related to the 
measure of the aliasing of the two filters h and g due to the 
overlapping of their frequency responses. We define the 
overlapping area as the surface delimited under the intersection 
of the two frequency response curves of the filters. The error 
surface is the difference between the frequency index and the 
overlapping area (Fig. 2). 

With orthogonal wavelets, If fits nearly the overlapping 
area. When the wavelet order is incremented, this area 
decreases and so does the frequency index (Fig. 2 a, b). 
Furthermore, decomposition ( h , g ) and reconstruction (h, g) 

filters verify the relations: )()( nhnh −=  and )()( ngng −=  
thus their frequency responses and consequently their frequency 
indices are the same. 

In the biorthogonal case, the surface error is greater than 
for the orthogonal one. If varies always like the wavelet order. 
Decomposition and reconstruction filters have symmetrical 
frequency responses around .2/π  Hence their overlapping 
areas are the same but their localizations are symmetrical 

around 2/π  consequently the frequency indices of the 

decomposition ( h , g ) and reconstruction filters ( h
~

, g~ ) are 
identical. Fig. 2 c, d shows an example of a biorthogonal 
Bspline wavelet. 

A good filter bank must be efficient simultaneously in the 
spatial and frequency domains, this means that the quality of the 
filter bank is a trade-off between its spatial and frequency 
quality.  
 
3.3 Relation between Is ,  If , and quality criteria 
 

A filter leads to a unique point in the “If” versus “Is” plan. 
For a given wavelet family the Is=f(If ) graph is monotonous, 
when the spatial index increases, the frequency one decreases 
(Fig. 3). The interest of WT is its spatial and frequency 
simultaneous ability of analyzing information, so it must ensure 
a better trade-off between a spatial and frequency analysis. This 
compromise is obtained when the current point is the more 
closer to the origin of the plan. In fact an experimental 
verification in which some images are compressed and 
decompressed by wavelet filters located at different positions in 
the (If, Is) plan shows that: when the Is index is high and If is 
low (for example db40) compression with the associated filter 
give a blur effect on the decompressed images, when the Is 
index is low and If is high (for example db1) compression with 
the associated filter give a blocs effect on the decompressed 
images and the better compromise between the two effects is 
obtained when the filter is closer to the origin (Fig. 4).  These 
results show that the selected indices characterize different 
parameters of the compression quality and this quality is 
depending on both indices. Quality criteria can be predicted by 
means of a RBNN as developed in section 4. 
 

4.   APPLICATIONS 
 
4.1 Coding software 
 

The software of image coding for our purpose is the 
“Wavelet transform-based image coder for greyscale images” 
available on [9]. It is a simple coder designed for 
experimentations but quite effective and modular. Each 
elementary component is selected for high performances and 
can be replaced by our own component. 

We implemented several wavelets filters: Daubechies, 
Symlets and Bsplines in the wavelet coder. Compression 
performances tests for two different images: the Barbara image 
and a texture image (Fig. 5), allow us the following and trivial 
observations: 
• The RMSE increases as the PSNR decreases when the 

compression ratio decreases. 
•  For the same ratio, the Barbara image admits a better 

quality after decoding than a texture image since the 
texture images contain many details that correspond to 
high frequencies. The algorithm of WT coding allocates 
more bits to the low frequencies areas, for which human 
eye is more sensitive, thus after decoding the high 
frequencies images have a low PSNR. 

• It is noticeable that the quality of compression depends 
also on the image class (medicals, naturals, or texture 
images).  

 
4.2 First application  

 
For a given set of filter banks, knowing the coding 

performances of an image class, the goal is to estimate the 
coding performances for a new filter bank and for a new image 
owing to the same image class. 
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Figure 1:  Basic compression scheme 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The criteria PSNR, RMSE with respect to Is, and If  were 
fitted by a RBNN for the Barbara image with 4:1 compression 
ratio; the choice of the neural network is justified by its 
interesting interpolation and approximation properties.  

After training, this neural network becomes a predictor of 
the coding performances. Thus, both the coding algorithm and 
the calculation of the quality criterion behave as a black box, 
the indices of the filter bank Is and If are the inputs, while the 
outputs are the predicted quality criteria according to selected 
metrics (Fig. 6).  
 
 
 
 
 
 

For each 20 Symlets filter banks, the real values of quality 
criteria are calculated and compared to their estimated value as 
shown in Fig. 6, their highest difference as well as their RMSE 
are given in Table 1 confirming the predicting ability of the 
neural network. 
 

 Criterion 
RMSE 

Criterion 
PSNR 

Max error  0.1218 0.4678 

MSE  0.0041 0.0582 
 
 

This approach is an efficient method for measuring the 
performances of other filter banks close to already known filter 
banks, either by interpolating the criterion curves or thanks to 
the RBNN with Is and If   as entries. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3 Second application 
 

Let suppose that coding performances for one or several 
filter banks are known for a set of images; the goal is now to 
predict the coding performances for a new image. This problem 
can be posed differently: let being a given image; which filter 
bank provides the best compression quality for this image?  

To deal with this problem a set of 25 texture images, 
512x512x8 bit grayscale, is selected from the USC-SIPI data 
base [10]. Texture groups are relatively different such as the 
standard deviation is 5.95 for the PSNR. The average criteria 
(PSNR, RMSE) obtained on the 25 images and for 40 
Daubechies filter banks, are plotted with respect to Is and If  in 
Fig. 7, as well as the estimated mean average criteria provided 
by the RBNN predictor (Table 2). Real and estimated criteria 
are nearly superimposed (Fig. 8). 

 
 

 Criterion 
RMSE 

Criterion 
PSNR 

Max error 0.0001 0.021 

MSE 0.0000    0.0000    
 
 
 
After training, any new image provides the same quality 

for a selected filter bank 
Two images were selected, the first one presents few 

differences compared to the average of the 25 images, on the 
contrary the second image has many differences. The real 
PSNR with 40 Daubechies filter banks is computed and plotted 
in Fig. 9 for the first image and in Fig. 10 for the second one. 

Table 2: Coding performances (application 2, training basis) 

Figure 5: Coding performances: a, b RMSE and PSNR with respect to 
compression ratio, (o: Barbara image, +: texture image), c, d: PSNR 
with respect to indices for Barbara image, Daubechies wavelet filters 
and two different compression ratios (on left 8:1, on right 4:1). 
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Figure 2: Filter banks frequency responses; a: Daubechies 40 (db40), 
b: db2,  c: Bspline3.9 (bior3.9), d: bior3.1 (solid lines refer to 
decomposition filters, dashed lines to reconstruction filters). 
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Figure 3: Is=f(If ) for bior 1.1…bior 3.9;  db1…db42; and symlets 
(sym) sym1,…sym35, in log abscises. 

Table 1: Coding performances (application 1) 

 
RBNN 

RMSE 

PSNR If 

Is 

Figure 6: RBNN coder. 

Figure 4: Coding performances for Barbara image and Daubechies 
wavelet filters; a: db1, b:db7, c:db40 
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As expected, the error of the quality criterion for the 
second image is greater than the one of the first image. 
Comparison between the real and the estimated values (Table 3) 
for both images confirms that the training database must be 
chosen very carefully. In that case, the results are very 
satisfying.  
 

Image 1 Image 2  

Criterion 
RMSE 

Criterion 
PSNR 

Criterion 
RMSE 

Criterion
PSNR 

Max error 0.8568 1.5749 0.056 0.2745 

MSE  0.5713 1.2971 0.0081 0.0958 

 
 
 
 

5. DISCUSSION 
 

The framework of this study is the estimation of criteria 
for evaluating the compression quality in image processing. 
Filter banks of a DWT can be characterized by two indices 
defined in the spatial and frequency domains that are also 
related to the compression ratio, to the image family and to 
quality criteria of compression. Experimental quality criteria 
were calculated, then were approximated by a radial basis 
neural network in order to predict the compression quality for 
either new filter banks or new images with consistent results. 
Thus the coding algorithm and the estimation of the quality are 
considered as a black box, the filter banks indices are the inputs, 
the selected criteria of the quality such as RMSE or PSNR are 
the outputs. Now it is useful to extend this work to more 
wavelet transforms and more image families representative of 
any current application with different compression ratios. 

 Quality criteria such as PSNR allow us to evaluate the 
numerical difference between images, however they do not 

reflect accurately the appreciation of the humane eye, thus it is 
interesting to integrate other quality criteria, such as those based 
on the modeling of the human vision system. 
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Table 3: Coding performances (application 2, two images 
comparison) 

Figure 7: On left, estimated and real RMSE; on right, estimated and real 
PSNR (+: real curves, o: estimated curves),  for 4:1 compression ratio 
and Symlet wavelet filter banks.  

Figure 8: On left, estimated and real mean RMSE; on right, estimated 
and real mean PSNR (+: real curves, o: estimated curves), for 25 
images, 8:1 compression ratio and Daubechies wavelets. 

Figure 9: On left, real RMSE; on right, real PSNR,  for image 1, 8:1 
compression ratio, and Daubechies wavelet filter banks. 

Figure 10: On left, real RMSE; on right, real PSNR curves, 
for image 2, 8:1 compression ratio, and Daubechies wavelets. 
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