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ABSTRACT

Proportionate adaptive filters can improve the convergence speed
for the identification of sparse systems as compared to their conven-
tional counterparts. In this paper, the idea of proportionate adapta-
tion is combined with the framework of set-membership filtering
(SMF) in an attempt to derive novel computationally efficient algo-
rithms. The resulting algorithms attain an attractive faster converge
for both situations of sparse and dispersive channels while decreas-
ing the computational complexity due to the data discerning feature
of the SMF approach. Simulations show good results in terms of
reduced number of updates, speed of convergence, and final mean-
squared error.

1. INTRODUCTION

Frequently used adaptive filtering algorithms like the least mean
square (LMS) and the normalized LMS (NLMS) algorithms share
the features of low computational complexity and proven robust-
ness. The LMS and the NLMS algorithms have in common that the
adaptive filter is updated in the direction of the input vector with-
out favoring any particular direction. In other words, they are well
suited for dispersive-type systems where the energy is uniformly
distributed among the coefficients in the impulse response. On the
other hand, if the system to be identified is sparse, i.e., the impulse
response is characterized by a few dominant coefficients, using dif-
ferent step sizes for each adaptive filter coefficient can improve the
initial convergence of the NLMS algorithm. This basic concept is
explored in proportionate adaptive filters [1, 2, 3], which incor-
porates the importance of the individual components by assigning
weights proportional to the magnitude of the coefficients.

The conventional proportionate NLMS (PNLMS) algorithm [1]
experiences fast initial adaptation for the dominant coefficients fol-
lowed by a slower second transient for the remaining coefficients.
Therefore, the slow convergence of the PNLMS algorithm after the
initial transient can be circumvented by switching to the NLMS al-
gorithm [4].

Another problem related to the conventional PNLMS algo-
rithm is the poor performance in dispersive or semi-dispersive chan-
nels [2]. Refinements of the PNLMS have been proposed [2, 3]
to improve performance in a dispersive medium and to combat the
slowdown after the initial adaptation. The PNLMS++ algorithm
in [2] approaches the problem by alternating the NLMS update with
a PNLMS update. The improved PNLMS (IPNLMS) algorithm [3]
combines the NLMS and PNLMS algorithms into one single up-
dating expression. The main idea of the IPNLMS algorithm was
to establish a rule for automatical switching from one algorithm
to the other. Extension of the proportionate adaptation concept to
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affine projection (AP) type algorithms, proportionate affine projec-
tion (PAP) algorithms, can be found in [5, 6].

Using the PNLMS algorithm instead of the NLMS algorithm
leads to a 50% increase of the computational complexity. An effi-
cient approach to reduce computations is to employ set-membership
filtering (SMF) techniques [7, 8], where the filter is designed
such that the output estimation error is upper bounded by a pre-
determined threshold.1 Set-membership adaptive filters (SMAF)
feature data-selective (sparse in time) updating, and a time-varying
data-dependent step size that provides fast convergence to a low
steady-state error. In the following we combine the frameworks of
proportionate adaptation and SMF. A set-membership proportion-
ate NLMS (SM-PNLMS) algorithm is proposed as a viable alter-
native to the SM-NLMS algorithm [7] for operation in sparse sce-
narios. Following the ideas of the IPNLMS algorithm, an efficient
weight-scaling assignment is proposed that utilizes the information
provided by the data-dependent step size. Thereafter, we propose
a more general algorithm, the set-membership proportionate affine
projection algorithm (SM-PAPA) that reuses past input-desired data
pairs in the same way as the SM-AP algorithm [10]. Finally, the per-
formances of the proposed algorithms are evaluated through simu-
lations which are followed by conclusions.

2. SMF

Set-membership filtering is a framework applicable to filtering
problems that are linear in parameters.2 A specification on the fil-
ter parameters w ∈ CN is achieved by constraining the magnitude
of the output estimation error, e = dk −wHxk, to be smaller than
a deterministic threshold g , where xk ∈ CN and dk ∈ C denote the
input vector and the desired output signal, respectively. As a result
of the bounded error constraint, there will exist a set of filters rather
than a single estimate.

Adaptive SMF algorithms seek solutions that belong to the ex-
act membership set y k constructed from the observed input-signal
and desired signal pairs,

y k =
k

⋂

i=1

Hi (1)

where Hk is referred to as the constraint set containing all the vec-
tors w for which the associated output error at time instant k is upper
bounded in magnitude by g :

Hk = {w ∈ C
N : |dk −wHxk| ≤ g } (2)

1For other reduced-complexity solutions, see, e.g., [4] where the concept
of partial updating is applied.

2This includes nonlinear problems like Volterra modelling, see, e.g., [9].



Adaptive approaches leading to algorithms with low peak complex-
ity compute a point estimate through projections using information
provided by past constraint sets [7, 8, 10].

3. SM-PNLMS

In this section the idea of proportionate adaptation is applied to SMF
in order to derive a data-selective algorithm, the SM-PNLMS, suit-
able for sparse environments.

3.1 Algorithm derivation

The SM-PNLMS algorithm uses the information provided by the
constraint set Hk and the coefficient updating to solve the optimiza-
tion problem employing the criterion

wk+1 = argmin
w

‖w−wk‖2
G

−1
k

subjected to:

w ∈ Hk

(3)

where Gk is here chosen as a diagonal weighting matrix of the form:

Gk = diag{g1,k, · · · , gN,k} (4)

The elements values of Gk will be discussed Subsection 3.2. The
optimization criterion in Eq. (3) states that if the previous estimate
already belongs to the constraint set, wk ∈ Hk , it is a feasible so-
lution and no update is needed. However, if wk 6∈ Hk , an update is
required. Following the principle of minimal disturbance, a feasible
update made such that it ends up on the nearest boundary of Hk is
given by

wk+1 = wk + a k
e∗kGkxk

xH
k Gkxk

(5)

where

a k =

{

1− g
|ek| , if |ek| > g

0, otherwise
(6)

is a time-varying data-dependent step-size, and e(k) is the a priori
error given by

ek = dk −wH
k xk. (7)

For the proportionate algorithms considered in this paper, matrix
Gk will be diagonal. However, with other choices of Gk, we can
identify from Eq. (5) different types of SMAFs available in liter-
ature. For example, choosing Gk = I gives the SM-NLMS algo-
rithm [7], setting Gk equal to a weighted covariance matrix will
result in the BEACON recursions [11], and choosing Gk such that
it extracts the P ≤ N elements in xk of largest magnitude gives a
partial-updating SMF [12]. Next we consider the weighting matrix
used with the SM-PNLMS algorithm.

3.2 Choice of weighting matrix Gk

This section proposes a weighting matrix Gk suitable for operation
in sparse environments.

Following the same line of thought as in the IPNLMS algo-
rithm, the diagonal elements of Gk are computed to provide a good
balance between the SM-NLMS algorithm and a solution for sparse
systems. The goal is to reduce the length of the initial transient for
estimating the dominant peaks in the impulse response and, there-
after, to emphasize the input-signal direction to avoid a slow sec-
ond transient. Furthermore, the solution should not be sensitive to
the assumption of a sparse system. From the expression for a k in
Eq. (6) we see that if the solution is far from the constraint set we
have a k → 1, while close to the steady-state a k → 0. Therefore, a
suitable weight assignment rule emphasizes dominant peaks when
a k → 1 and the input-signal direction (SM-PNLMS update) when
a k → 0. As a k is a good indicator of how close a steady-state solu-
tion is, we propose to use

gi,k =
1− k a k

N
+

k a k|wi,k|
‖wk‖1

(8)

where k ∈ [0, 1] and ‖wk‖1 = å i |wi,k| denotes the l1 norm with
å i |wi,k| = 1 as in [1, 3].. The constant k is included to increase
the robustness for estimation errors in wk, and from the simula-
tions provided in Section 5, k = 0.5 shows good performance for
both sparse and dispersive systems. For k = 1, the algorithm will
converge faster but will be more sensitive to the sparse assumption.
The IPNLMS algorithm uses a similar strategy, see [3] for details.
The updating expressions in Eqs. (8) and (5) resembles those of the
IPNLMS algorithm except for the time-varying step size a k. From
Eq. (8) we can observe: 1) during initial adaptation (during the tran-
sient) the solution is far from the steady-state solution, and conse-
quently a k is large, and more weight will be put on the strongest
components of the adaptive filter’s impulse response; 2) as the er-
ror decreases, a k gets smaller, all the coefficients become equally
important, and the algorithm behaves the SM-NLMS algorithm.

4. SM-PAPA

In this section we extend the results from the previous section to
derive an algorithm that utilizes the L most recent constraint sets
{Hi}k

i=k−L+1 . The algorithm, SM-PAPA, includes the SM-AP al-
gorithm [10] as a special case and is suitable whenever the input
signal is highly correlated. As with the SM-PNLMS algorithm, the
main idea is to allocate different weights to the filter coefficients
using a weighting matrix Gk . The SM-PAPA is derived so that its
coefficient vector after updating belongs to the set y L

k correspond-
ing to the intersection of L past constraint sets, i.e.,

y L
k =

k
⋂

i=k−L+1

Hi (9)

If the previous estimate belongs to the L past constraint sets,
i.e., wk ∈ y L

k no coefficient update is required. Otherwise, the SM-
PAPA performs an update according to the following optimization
criterion

wk+1 = argmin
w

‖w−wk‖2
G

−1
k

subjected to:

dk −XT
k w

∗ = pk

(10)

where vector dk ∈ CL contains the desired outputs from the L last
time instants, vector pk ∈ CL has components that obey |pi,k| < g
and so specify the point in y L

k , and matrix Xk ∈ CN×L contains the
corresponding input vectors, i.e.,

pk =
[

p1,k p2,k . . . pL,k
]T

dk = [dk dk−1 . . . dk−L+1]
T

Xk = [xk xk−1 · · · xk−L+1]

(11)

Applying the method of Lagrange multipliers for solving the
minimization problem of Eq. (10), the update equation of the most
general SM-PAPA version is obtained as

wk+1 =

{

wk +GkXk[X
H
k GkXk]

−1
[

e∗k −p∗
k

]

, if |ek| > g
wk otherwise

(12)

The choice of pi(k) can vary for different problems. Fol-
lowing the ideas of [10], a particulary simple SM-PAPA version
is obtained if pi,k for i 6= 1 corresponds to the a posteriori error
dk−i+1 −wH

k xk−i+1 and p1,k = ek/|ek|. The simplified SM-PAPA
version has the recursions given by

wk+1 = wk +GkXk[X
H
k GkXk]

−1a ke∗ku1 (13)

where u1 = [1 0 · · · 0]T and a k is given by Eq. (6).



Table 1: The Set-Membership Proportionate Affine-Projection Al-
gorithm.

SM-PAPA
for each k
{

ek = dk −xH
k wk

if |ek| > g
{

a k = 1− g /|e(k)|
gi,k = 1−k a k

N +
k a k|wi,k|
å N

i=1 |wi,k|
, i = 1, . . . , N

Gk = diag[g1,k · · · gN,k]
Xk = [xk Uk]
f k = xk −Uk(U

H
k GkUk)

−1UH
k Gkxk

wk+1 = wk + a ke∗k
1

f H
k Gk f k

Gkf k

}
else
{
wk+1 = wk

}
}

Due to the special solution involving u1 in Eq. (13), a compu-
tationally efficient expression for the coefficient update is obtained
by partitioning the input signal matrix as3

Xk = [xk Uk] (14)

where Uk = [xk−1 · · · xk−L+1]. Substituting the partitioned input
matrix in Eq. (13) and carrying out the multiplications, we get after
some algebraic manipulations (see Appendix)

wk+1 = wk +
a ke∗k

f H
k Gk f k

Gk f k (15)

where vector f k is defined as

f k = xk −Uk(U
H
k GkUk)

−1UH
k Gkxk (16)

This representation of the SM-PAPA is computationally attrac-
tive as the dimension of the matrix to be inverted is reduced from
L×L to (L−1)× (L−1). As with the SM-PNLMS algorithms, Gk
is a diagonal matrix whose elements are computed according to (8).
Table 1 shows the recursions for the SM-PAPA.

5. SIMULATION RESULTS

In this section, the performances of the SM-PNLMS algorithm and
SM-PAPA are evaluated in a system identification experiment. The
performance of the NLMS, the IPNLMS, the SM-NLMS, and the
SM-AP algorithms are also compared.

The first experiment was carried out with an unknown plant
with sparse impulse response that consisted of an N = 50 truncated
FIR model from a digital microwave radio channel.4 Thereafter,
the algorithms were tested for a dispersive channel, where the plant
was a complex FIR filter whose coefficients were generated ran-
domly. Figure 1 depicts the absolute values of the channel impulse
responses used in the simulations. For the simulation experiments,
we have used the following parameters: m = 0.4 for the NLMS
and the PAP algorithms, g =

√

2s 2
n for all SMAFs, k = 0.5 for all

3The same approach can be used to reduce the complexity of the
Ozeki Umeda’s AP algorithm for the case of unit step size [13].

4The coefficients of this complex-valued baseband channel model can be
downloaded from http://spib.rice.edu/spib/microwave.html
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Figure 1: The amplitude of two impulse responses used in the sim-
ulations: a sparse microwave channel4 (top), and a dispersive (bot-
tom).

proportionate algorithms. Note that for the IPNLMS and the PAP

algorithms gi,k = 1−k
N +

k |wi,k|
‖wk‖ correspond to the same updating as

in [3] when k ∈ [0, 1]. The parameters were set in order to have fair
comparison in terms of the final steady-state error. The input sig-
nal x(k) was a complex-valued noise sequence, colored by filtering
a zero-mean white complex-valued Gaussian noise sequence nx(k)
through the fourth-order IIR filter x(k) = nx(k)+ 0.6617x(k−1)+
0.3402x(k−2)+0.5235x(k−3)−0.8703x(k−4), and the SNR was
set to 40dB.

The learning curves shown in Figures 2–3 are the result of 500
independent runs and smoothed by a low pass filter. From the learn-
ing curves in Figure 2 for the sparse system, it can be seen that
the SMF algorithms converge slightly faster than their conventional
counterparts to the same level of MSE. In addition to the faster
convergence, the SMF algorithms will have a reduced number of
updates. In 20000 iterations, the number of times an update took
place for the SM-PNLMS, the SM-PAPA, and the SM-AP algo-
rithms were 7730 (39%), 6000 (30%), and 6330 (32%), respec-
tively. This should be compared with 20000 updates required by
the IPNLMS and PAP algorithms. From Figure 2, we also see that
the proportionate SMF algorithms converges faster than those with-
out proportionate adaptation.

Figure 3 shows the learning curves for the dispersive channel
identification, where it can be observed that the performance of
the SM-PNLMS algorithm and SM-PAPA is very close to the SM-
AP and SM-NLMS algorithms, respectively. In other words, the
SM-PNLMS algorithm and the SM-PAPA are not sensitive to the
assumption of having a sparse impulse response. In 20000 iter-
ations, the SM-PAPA and the SM-PNLMS algorithm updated 32%
and 50%, respectively, while the SM-AP and SM-NLMS algorithms
updated 32% and 49%, respectively.

6. CONCLUSIONS

This paper presented novel set-membership filtering (SMF) al-
gorithms suitable for applications in sparse environments. The
set-membership proportionate NLMS (SM-PNLMS) algorithm and
the set-membership proportionate affine projection algorithm (SM-
PAPA) are proposed as viable alternatives to the SM-NLMS and
SM-AP algorithms. The algorithms benefit from the reduced av-
erage computational complexity from the SMF strategy and fast
convergence for sparse scenarios resulting from proportionate up-
dating. Simulations were presented for both sparse and dispersive
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Figure 2: Learning curves in a sparse system for the SM-PNLMS,
the SM-PAPA (L = 2), the SM-NLMS, the NLMS, the IPNLMS,
the PAP (L = 2) algorithms. SNR = 40 dB, g =

√
2s n, and m = 0.4.

impulse responses. It was verified that not only the proposed SMF
algorithms can further reduce the computational complexity when
compared with their conventional counterparts, the IPNLMS and
PAP algorithms, but also present a faster convergence to the same
level of MSE when compared with the SM-NLMS and the SM-AP
algorithms. The weight assignment of the proposed algorithms uti-
lize the information provided by a time-varying step size typical for
SMF algorithms and is robust to the assumption of sparse impulse
response.

7. APPENDIX

The inverse in Eq. (13) can be partitioned as

(

XH
k GkXk

)−1
=

(

[xk Uk]
H
Gk [xk Uk]

)−1
=

[

a bH

b C

]

(17)

where

a =
1

f H
k Gkxk

=
1

f H
k Gk f k

b = −a
(

UH
k GkUk

)−1
UH

k Gkxk

(18)

with f k defined as in Eq. (16). Therefore,

GkXk

(

XH
k GkXk

)−1
u1 = GkXk

[

a
b

]

=
Gkxk −Gk

(

UH
k GkUk

)−1
UH

k Gkxk

f H
k Gkf k

=
Gk f k

f H
k Gkf k

.

(19)
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[4] K. Doğançay and O. Tanrıkulu, “Selective-partial-update nor-
malized least-mean-square algorithm for network echo cancel-
lation,” ICASSP’2002, Orlando, USA, 2002.

[5] J. Benesty, T. Gänsler, D.R. Morgan, M.M. Sondhi, S. Gay, Ad-
vances in Network and Acoustic Echo Cancellation, New York:
Springer Verlag, 2001.

[6] O. Hoshuyama, R. A. Goubran, A. Sugiyama, “A general-
ized proportionate variable step-size algorithm for fast chang-
ing acoustic enviroments,” ICASSP’2004, Montreal, Canada,
2004.

[7] S. Gollamudi, S. Nagaraj, S. Kapoor, and Y.-F. Huang, “Set-
membership filtering and a set-membership normalized LMS
algorithm with an adaptive step size,” IEEE Signal Processing
Lett., vol. 5, pp. 111-114, May 1998.

[8] P. S. R. Diniz and S. Werner, “Set-membership binormalized
LMS data-reusing algorithms,” IEEE Trans. Signal Processing,
vol. 51, Jan. 2003.

[9] A. V. Malipatil, Y. F. Huang, S. Andra, and K. Bennett, “A
kernalized set-membership approach to nonlinear adaptive fil-
tering,” ICASSP’2005, Philadelphia, PA, USA, 2005.

[10] S. Werner and P. S. R. Diniz, “Set-membership affine projec-
tion algorithm,” IEEE Signal Processing Lett., vol. 8, pp. 231–
235, Aug. 2001.

[11] S. Nagaraj, S. Gollamudi, S. Kapoor, and Y. F. Huang,
“BEACON: An adaptive set-membership filtering technique
with sparse updates,” IEEE Trans. Signal Processing, vol. 47,
no. 11, pp. 2928–2941, November 1999.

[12] S. Werner, M. L. R. de Campos, and P. S. R. Diniz, “Partial-
update NLMS algorithms with data-selective updating,” IEEE
Trans. Signal Processing, vol. 52, pp. 938–949, Apr. 2004.

[13] M. Rupp, “A family of adaptive filtering algorithms with
decorrelating properties,” IEEE Trans. Signal Processing, vol.
46, no. 3, pp. 771–775, March 1998.


	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Timo Laakso
	Paulo Diniz
	Jose Apolinario
	Stefan Werner



