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ABSTRACT

Atlas-based medical image segmentation is a well known
method for including prior knowledge in medical image
analysis. It requires as basic component the registration of an
atlas with the image. In this paper, we introduce the concept
of hierarchical atlas and show how to efficiently include it
in a state-of-the-art non-rigid registration algorithm. We first
present how to build a hierarchical atlas. Then we present
the extension of a non-rigid registration algorithm, namely
the B-spline Free Form Deformation (FFD), to a hierarchical
version. The procedure includes first an affine registration
to bring the atlas and the patient image in global correspon-
dence. Then the non-rigid registration is performed layer by
layer, i.e. registering the image with each layer of the hierar-
chical atlas, using the result of the registration of the previous
layer as initial condition for the registration of the next layer.
We show on 2D CT images that this approach gives better re-
sults than the non-rigid registration algorithm alone, in terms
of registration accuracy.

1. INTRODUCTION

In this paper, we want to explore the integration of a registra-
tion method in segmentation of the neck structures in Com-
puted Tomography (CT) images. The clinical aim is radio-
therapy of the neck cancer. In a radiotherapy treatment, a
source emits radiations which penetrate through the skin in
the tumoral volume to be irradiated. To be both effective in
cancerous tissues and respectful to healthy ones, the dose of
radiation should vary according to the area. In the neck, 7
distinct spaces are counted out by specialists; for each space
a specific intensity is required. In the traditional approach a
alloy cover is constructed for each patient in order to protect
some regions and thus minimize the destruction of healthy
cells. Obviously, this technique is too restrictive in term of
time and cost. According to the current state of the tech-
nique, the ultimate ”high precision” technique is the Inten-
sity Modulated Radiotherapy (IMRT) where the intensity of
the radiation is modulated depending on the region. This re-
quires thus a precise definition of the region of interest, i.e.
a segmentation of the target image. Nevertheless, for tumors
of the Head and Neck (H&N), the implementation in routine
practice is facing significant obstacles. Indeed, besides the
precise contouring of primary H&N tumors that is often diffi-
cult, the accurate, reproducible and time-efficient contouring
of elective nodal risk regions represents an even greater chal-
lenge that is making the use of this technique uncommon.
To cope with this problem, we propose to use an atlas of the
neck area and to exploit it to segment the different regions of
interest. Several atlas-based segmentation techniques have

been proposed for medical applications. Their review is out
of the scope of this paper. Let us only mention two of them
directly related to this paper. In [1], Bach et al. present an
atlas-based segmentation for pathological brain images and
in a hierarchical point of view, Kapur et al. ([7]) adapt a reg-
istration algorithm for each level of a multi-level knee atlas.
In the case of the neck, we must take into account the high
local variability and complexity of the region, and therefore
a localized registration is required. In the literature, we can
find a large panel of registration methods. A general formu-
lation of the problem that is often encountered consists in
optimizing a functional F :

argmin
T

F(Image1, Image2,T )

where T is the geometric transformation used to register one
image with the other one.
The resolution of the formulation depends on one side on
the choice of T and on the other side of the choice of F .
Firstly, the choice of T determines the nature of the transfor-
mation and the number of degrees of freedom associated. For
more local result, a non-rigid approach must be used. Sev-
eral methods have been developed. Christensen and Miller
[4] proposed for T a free deformation on the model of vis-
cous fluid (similar to the Navier Stokes equations). By anal-
ogy with Maxwell’s Demons, Thirion [13] has developed a
diffusion model. Meyer et al. [9] have proposed an algo-
rithm based on thin plates spline deformation. Following this
idea, Rueckert [12] et al. have used B-splines associated to a
multi-scale framework. Finally, in a similar scheme, Rhode
et al. [11] apply radially symmetric basis functions which
can be spatially adapted. In most of the methods, the para-
meters of T are iteratively computed such a way that the sim-
ilarity measure F between both images is maximized. Differ-
ent techniques for measuring this similarity have been devel-
oped. A widely used measure is the mutual information, or
its derived form the normalized mutual information, which
model the statistical relationship between the target image
and the transformed image. The mutual information measure
has been introduced in parallel by Collignon [5] and Viola
[14]. [2], [3], [11], [12] and [9] take this criterion as the sim-
ilarity measure (see [10] for a review on this topic). In this
paper, we propose a variation of the atlas-based segmentation
technique, by defining a hierarchical procedure to progres-
sively register the atlas with the target image. As a demon-
stration, we will consider Computed Tomography(CT) im-
ages of the neck.



2. METHOD

2.1 Construction of the Atlas

Given a CT image of the neck, we define an atlas of this re-
gion (figure 1) by manual extraction of some structures of in-
terest in a reference image. Next, we establish a hierarchical

Figure 1: Left: Source image. Right: The atlas deduced from
the source image

construction of our atlas, related to the degree of easiness of
the segmentation problem. The first layer will be composed
of the most visible structures and the last layer, obviously, of
the less visible. Figure 2 illustrates the construction of the
mask.

Figure 2: Left: Source image. Right: Successive atlas layer

2.2 Registration Technique

In order to find the best matching between the target image
and the mask, we need to know the transformation that re-
lates the coordinate space in an image A with the correspond-
ing coordinate space in the other image B. Let us call T this

registration transformation:

T : B 7→ A
T (uB) = uA

In the following, A will denote the target image and B the
source image.

2.2.1 Global part

As a pre-processing, we apply an affine transformation to the
source image to put it in global correspondence with the tar-
get one. In 2D, this leads to the optimization of 6 parameters,
describing the translation, rotation, scaling and shearing of
the source image.

[
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(1)

2.2.2 Nonrigid registration using B-splines

For this part, we have chosen to use a state-of-the-art non-
rigid registration techniques, based on B-Splines, following
an approach similar to [12]. We want to remind the reader
that the actual algorithm used here is not central in this
paper. We just use it to illustrate our hierarchical approach,
which is the main point that we want to present. Any good
non-rigid algorithm can fit in this framework. For this type of
registration, a control points grid is constructed in the source
image. The goal is to find the best displacement of those
control points which maps the source image landmark points
to the target image using spline interpolation. B-Splines
belong to the Free Form Deformations (FFD) class and are
a powerful tool for modelling deformable model. Unlike the
classical radial basis functions such as thin-plate Splines,
B-Spline have finite support. It means that we will have only
a local influence for each control point.
Let now define our B-Spline-based FFD.
W = {(x,y) | 0≤ x < X ,0≤ y < Y} is the rectangular
domain containing the region to be transformed and F a
nx × ny mesh of control points f i, j. Using the B-spline
interpolation, we define the local transformation by :

Tlocal(x,y) =
3

å
l=0

3

å
m=0

q l(u)q m(v)f i+l, j+m (2)

where i = b x
nx
c−1, j = b y

ny
c−1, u = x

nx
−b x

nx
c, v = y

ny
−b y

ny
c

and q l represents the l-th basis function of the B-splines:

q 0(s) = (1− s)3/6
q 1(s) = (3s3−6s2 +4)/6
q 2(s) = (−3s3 +3s2 +3s+1)/6
q 3(s) = s3/6

(3)

where 0≤ s < 1.
After the affine and the B-spline transformation, the final de-
formation field is given by:

u′ = u+Tlocal(u) (4)

where u = (x,y) is issued from the affine transformation.
With the basis functions, the weight of the contribution of
each control point in Tlocal(x,y) is estimated. Thus, the con-
trol points displacement determines the local transformation.
The next step is to find this displacement by optimizing a
similarity measure.



Figure 3: Summary of our hierarchical atlas based registra-
tion algorithm

2.2.3 Similarity criterion: Mutual Information

In the registration process, the choice of the metric system
of similarity has significant effects. The similarity criterion
will measure the quality of the alignment between the tar-
get and the source image. As it has been said, since in our
application the target image come form a CT scanner and
the source image is a binary image, the similarity criterion
must take in account the multimodal nature of those images.
Therefore we have chosen to use Mutual Information (MI),
which measures statistical dependance between two images.
Mutual information is defined in terms of entropy:

H(A) =− å
a

pA(a) log pA(a) (5)

One form of mutual information is:

MI(A,B) = H(A)+H(B)−H(A,B) (6)

where H(A), H(B) denote the marginal entropies of A, B and
H(A,B) denotes the joint entropy of two random variables.
The joint entropy measured from the joint histogram must be
minimized in order to maximize the mutual information. We
have used the Mattes et al. [8] implementation for the MI
computation.

2.3 Hierarchical atlas-based registration

Using the algorithm described previously, we wish to register
successively each layer of our atlas with the target image. In
this aim, the FFD registration is applied for each layer. Our
strategy is to treat each layer’s registration as a sequential
process. Concretely, the deformation field of the layer i will
initialize the deformation field of layer i+1. Thus, each de-
formation field is a part of the hierarchical scheme where the
highest level corresponds to the last transformation. Figure
3 describes the steps of the hierarchical registration. Fur-
thermore, the hierarchical scheme allows a coarse-to-fine ap-
proach for the registration.

3. RESULTS

Using 2D images CT scans of the two patients neck region,
we first apply a global registration using an affine transforma-

tion. From this result, we perform our tests. In this section,
we compare the results of our algorithm with a state-of-the-
art approach. In this case, we use the B-Spline multiresolu-
tion framework of Rueckert et al.[12] in which the resolution
of the grid control points increases with the image resolution.
Figure 4 gives the different results of registration. The first
image in the left side is the superposition of the target image
and the contour of the initial mask. The image on the mid-
dle shows the result after the registration in a multiresolution
framework and the last image shows the results obtained with
our algorithm. We note a difference of the registration in the
external structure and in the smaller structures. In particulary
the jaw has better registration results with our technique.
We assess the registration quality by measuring the distance
between a set of landmark points of the source image trans-
formed and the correspondent set in the target image. First,
7 points of interest are pointed manually on the target image
and second the corresponded points are marked on the source
image (figure 5). The Euclidean distance (equation 7) is used
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Figure 5: Corresponding landmarks on the target and source
images

as the error estimator between the landmark point u′i and the
manually selected point uBi in the source image.

d = ‖uBi −u′i‖ (7)

This estimation error is applied to the two registrations
modality. Table 1 presents results of our measures. dinit is
the error before the registration, dNRM the error after a mul-
tiresolution non rigid registration and dNRHA the error after
the non rigid hierarchical atlas-based registration.

Table 1:

Landmarks dinit dNRM dNRHA
1 9.06 8.01 2.69
2 8.06 2.19 2.81
3 6.00 5.96 1.91
4 7.21 5.46 5.09
5 10.63 7.28 4.58
6 8.06 5.11 2.08
7 31.76 26.22 24.07

Mean 11.54 8.60 3.73

4. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new framework for Free
Form registration, illustrated in the case of B-Splines based
registration. The registration by successive layers allows bet-
ter local deformation. We have compared our technique with



Figure 4: Results. From left to right, initialization of the atlas, atlas after applying FFD multiresolution registration, atlas after
applying our FFD hierarchical framework

the well know technique of free form multiresolution regis-
tration. The results have shown that a hierarchical atlas cap-
tures more precisely the contours of interest. The registration
made is a preliminary step before segmenting each area asso-
ciated to a label. Future works will focus first on working on
3D images and on the automatization of the atlas construc-
tion.
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