
MULTI-COMPONENT SIGNAL DENOISING USING UNITARY TIME-FREQUENCY
TRANSFORMS

Arnaud Jarrot†, Cornel Ioana†, André Quinquis†, Jean-Claude Le Gac‡
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ABSTRACT
Recently, the analysis of multi-path configurations became
a challenging problem for people working in communication
or channel characterization fields. In these areas, the received
signal is generally expressed as the sum of the transmitted
signal and its time–shifted versions. The estimation of the
multi–path parameters, typically based on a matched filtering
procedure, depends on the noise–level in the received signal.

As shown through experimental results, the usual denois-
ing tools are not always well suited for signals arising from
multi-path configuration.

In this paper, a new denoising method is proposed
adapted to the case of underwater multi–path configuration.
This method, which preserves the distance between arrivals,
leads to a better noise robustness of the matched filtering pro-
cedure.

1. INTRODUCTION

The problem of analyzing multi–path channels received a
great interest in number of applications such as wireless
communication, radar, channel characterization, seismic ex-
ploration, etc. Generally, the aim of this analysis is the
reduction of undesirable multi–path effects. For example,
in digital communication, multi–path propagation causes
inter–symbol interferences limiting the communication data
rates. This phenomenon is strongly accentuated in under-
water acoustic channels [1]. In other cases, such as oceanic
tomography, the estimation of the multi–path configuration
leads to the physical characteristics of the channel (sound
velocity profile, salinity, etc) [2].

The standard processing concept in a multi–path config-
uration is based on the matched filtering [1, 2]. This tool
is particularly attractive since it maximizes the signal–to–
noise ratio (SNR) under white gaussian noise assumptions.
Roughly speaking, the matched filtering is provided by con-
volving the received signal with the time–reversal copy of
the transmitted one. In a real multi–path environment, the
matched filter performances can be affected by noise. More
precisely, the noise can introduce artefacts on the estimation
of the signal parameters. For example, if one is interested
in estimating the time–of–arrivals (TOAs) (associated with
maximas of the matched filtering), the noise could produce
spurious correlation peaks which provides wrong TOAs es-
timation. A solution consists in denoising the received data
before the matched filtering stage. In a multi–path configu-
ration, the main difficulty is to preserve the delays between
arrivals in addition to the denoising step.

One of the most popular denoising method [3] is based
on the discrimination between signal and noise on an orthog-

onal basis on which the noisy signal is projected. It has been
shown that the wavelet packet decomposition (WPD) is par-
ticularly adapted to provide such discrimination [4]. Further-
more, the thresholding of the wavelet coefficients leads to a
reduction of the noise. Nevertheless, as shown through ex-
perimental results, the HardThresholding [3] procedure af-
fects the temporal structure of arrivals, which damage the
performances of the matched filter.

An alternative solution is proposed in this paper. This
method is based on the use of another unitary transformation
[5]. This transformation projects the signal on a new rep-
resentation space which allow a compact representation of
the signal. In this new space, an appropriate filtering method
is applied. The denoised signal is then obtained using the
inverse unitary transformation. This leads to a better preser-
vation of the temporal structures and an improved SNR.

The paper is organized as follows. Section 2 investigates
the particularity of signal denoising in a multi–path configu-
ration with emphasis on the WPD–based denoising method.
An alternative denoising scheme, adapted to this configura-
tion, is then described in section 3. Simulation results are
presented in Section 4 and concluding remarks are given in
Section 5.

2. DENOISING A SIGNAL IN MULTI–PATH
CONFIGURATION

2.1 Model Of A Multi–Path Signal
A multi–path phenomenon causes a signal to arrive at a re-
ceiver via two or more different paths with different arrival
times. Typically, this effect is modelled as the output of a
finite impulse filter (FIR) with an impulse response (IR)[6]

h(t) =

K∑

i=1

ai δ (t − τi), ai,τi ∈ R, (1)

where ai and τi denote the attenuation factor and the time
delays of the ith path, K is the FIR length which is equivalent
to the number of paths and δ (·) is the delta function.

For a wideband signal e(t), the received signal is defined
by:

s(t) =

K∑

i=1

ai e(t − τi) + n(t) (2)

where n(t) stands for the noise. For a low SNR, the time de-
lay estimation process can be dramatically corrupted, even if
the transmitted signal is known at the reception. To improve
the robustness, several techniques have been proposed [6].



Nevertheless, the most popular tools for time delay estima-
tion assume that the noise is characterized as white Gaussian
and uncorrelated with the arrivals. These hypotheses are not
always satisfied. One example is the underwater channel
where the noise may be non–gaussian and correlated with
the arrivals [1].

2.2 Denoising Via WPD

The performances of the standard time delay estimation
process may be improved by denoising the signal before the
estimation step. Usual tools for signal denoising are based
on wavelet packet decomposition. Typically, the denoising
via WPD–based method can be done in three steps [3] which
consist in
1. Decomposing the signal on an orthogonal wavelet basis.

In the wavelet domain, nonzero coefficients are concen-
trated in the neighborhood of the signal transitions.

2. Thresholding the wavelet coefficients in this basis. This
allows to reduce the noise which is generally uniformly
distributed in the wavelet subspaces.

3. Reconstructing the signal with the remained coefficients.
However, the non–linearity of the thresholding procedure

affects the useful part of the received signal. Namely, the
WPD is sensitive to the signal transitions and the interfer-
ences terms, induced by multi–path, are amplified while they
are not related to a physical phenomenon.

This effect can be highlighted by considering two sig-
nals. The former is a noisy chirp signal and the latter is a
rough simulation of a three–path configuration with close ar-
rival times. For each test signal, the correlation function is
estimated before and after the denoising step. Considering
a 6th Symmlet–type wavelet, simulation results are depicted
Fig. 1.

In the left part, one can see that the denoising method
effectively leads to a noise reduction which is clearly visible
on the Wigner–Ville distribution (WVD) plane (Fig. 1a and
1c). Hence, the correlation performance (Fig. 1e) has been
improved since the denoising leads to a peak with a higher
magnitude and a reduction of the side lobes.

In contrary, the right side of Fig. 1 shows that the cor-
relation function (Fig. 1f) associated to the denoised signal
exhibits a peak with a higher magnitude than the correct one.

This example clearly demonstrates the limitation of the
WPD–based denoising method in the case of signal made of
very close arrival times. To overcome these limitations an
alternative denoising method is proposed in the next section.

3. SIGNAL DENOISING VIA FRACTIONAL
FOURIER TRANSFORM

Let U be a one–to–one map of the Hilbert space L2(Ω ⊆ R)
to itself. The necessary and sufficient condition for U to be
an unitary operator is [7]:

U∗U = UU∗ = I, (3)

where I is the identity operator. Unitary transformations
have useful property for time–frequency analysis. Most rele-
vant ones are the preservation of the signal norm in the trans-
formed space (‖Ux‖ = ‖x‖, with x ∈ L2(Ω)) and the ex-
istence of an inverse transformation [7].
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e) Correlation function of the
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Figure 1: Comparison of the WPD denoising method effects
on a mono–component signal and a 3 path signal.

3.1 Fractional Fourier Transform

A well–known exemple of such operator class is the frac-
tional Fourier transform (FrFT) of the signal x(t) ∈ L2(Ω)
given by [8, 9]

(Fα x)(ξ ) =

∫

t
hα(t,ξ ) x(t) dt,

where the kernel hα(t,ξ ) of the fractional Fourier operator
Fα is defined by

hα(t,ξ ) =
exp

(

i α
2

)

√

i sin(α)
· exp

(

iπ
(t2 + ξ 2)cos(α)− 2tξ

sin(α)

)

.

(4)
Note that for α = 0, (F0x)(ξ ) = x(t) and for α = π

2 +
2kπ , k ∈ N the classical expression of the Fourier Transform
(FT) is recovered.

The FT is a projection operator which maps the time
space to the frequency space. It corresponds to a counter-
clockwise rotation of the marginals over the time–frequency
plane with an angle of π

2 . From this definition, the FrFT can
be seen as a generalization of the FT for an arbitrary angle of
rotation α .

Since Fα is a unitary operator it follows, from (3) and
(4), that the inverse FrFT (IFrFT) exists and is given by

(Fα )−1 = (Fα)∗ = F−α
.



Fα Gg(ξ ) F−α

TF filtering operator: Da
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Figure 2: The time–frequency filtering operator.
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Figure 3: Optimal choice of the angle of rotation α .

3.2 Time–Frequency Denoising Operator
Let’s consider the class of (time) signals which has a linear
instantaneous frequency behavior

s(t) = exp
(

2iπ
(a

2
t + b

)
t
)

, a, b ∈ R, (5)

were a denotes the chirprate and b is the start frequency. For
any nonzero value of a, it is well–known that this class of sig-
nals is spread over the frequency domain since s(t) contains
all frequencies. To reduce this effect, we suggest to use the
fractional domain. Indeed, one can prove that it is possible to
obtain an arbitrarily compact support of this class on the frac-
tional domain. For an angle of rotation α = tan−1(−1/a),
one obtain

(
F tan−1(−1/a)s

)
(ξ ) =

√
i csc(α) ·δ

(
ξ − sign(b)√

b2 + 1

)
,

where csc(·) stands for the cosecant function and sign(·) is
the signum function. Obviously, for a signal s(t) corrupted
by an additive noise, it is possible to separate the signal and
the noise on the fractional domain by one of the numerous
stationary filtering method. With no loss of generality the
use of FIR filtering is considered for this purpose.

Following this procedure the Time–frequency denoising
operator (TFDO)Da

g(ξ ) can be represented as in Fig. 2, where
Gg(ξ ) is the operator related to the FIR filter characterized by
a frequency response g(ξ ). In short, the denoising procedure
consists in projecting the signal on the fractional domain, ap-
plying a classical stationnary filtering procedure (e.g. FIR)
and, using IFrFT, returning to the time domain.

The corresponding operator may be expressed in its inte-
gral form

(
Da

g(ξ )x
)

(t ′) =
1√

sin(α)

∫

ξ

∫

t
g(ξ ) x(t)

· exp
(

iπ
(t2 − t ′2)cos(α)+ 2ξ (t ′− t)

sin(α)

)
dt du.

Let’s consider an emitted signal with a linear instanta-
neous frequency law (see (5)) propagating in the multipath

e(t) s(t)

Channel IR

n(t)

WPD
TFDO

Denoising

Matched
filter

Matched
filter

TOAs

TOAs

Matched filter reference

Figure 4: Schematic representation of the simulation proce-
dure.

channel defined in (1). A schematic representation of the
received signal is depicted in Fig. 3. As shown, the opti-
mal FrFT angle α is given by the opposite of the angle be-
tween the time axis and the chirp cluster. The problem of
estimating this angle can be easily addressed with the help of
a time–frequency representation of the Cohen class [10]. A
more elegant solution consists in the estimation of the prin-
cipal axes as discussed in [9] since only few FrFT are needed
for the estimation of the FrFT angle.

In the remaining of this paper, it is assumed that a previ-
ous estimation stage has been performed and a valid estima-
tion of the angle of rotation α is available.

4. SIMULATION RESULTS

In this section, the behavior of the algorithm using under-
water simulated data is studied. The simulation procedure is
depicted Fig. 4. The channel IR (see (1)) is obtained by a
numerical simulation of a realistic physical configuration. It
is made of 7 different propagation paths with a sampling rate
of 3 kHz. The transmitted pulse e(t) is 2 seconds in duration
and has a linear sweep of frequencies from 300 Hz to 800
Hz. The model of the received signal s(t) is as defined in (2).
Note that no noise assumption has been made for the deriva-
tion of the TFDO. However, to fairly compare the denoising
methods it is assumed, in our simulations, n(t) to be a white
Gaussian stationary noise for which the WPD–based denois-
ing method performs optimally. The TOAs are estimated by
a matched filtering method with the transmitted signal as ref-
erence. Note that following results have been obtained with
50 different noise realizations and have to be taken in an av-
erage sense.

Fig. 5 shows the input signal–to–noise ratio (SNRin) ver-
sus the output signal–to–noise ratio (SNRout)

SNRin = 10 · log10
Pi

Pn
(dB) SNRout = 10 · log10

Po

Pn
(dB),

where Pi and Po are respectively the signal power before and
after denoising, and Pn the noise power. Both WPD–based
denoising and TFDO lead to an improvement of the SNRin.
Still, the TFDO achieves a better noise reduction than the
WPD–based method.

Fig. 6 shows the normalized correlation coefficient, de-
fined as:

Corr =
〈s(t), ŝ(t)〉

‖s(t)‖2 · ‖ŝ(t)‖2
.

This criterion is meaningful to describe how the denoising
method affects the useful part of te signal. As introduced in
section 2.2, the WPD–based denoising method is very sen-
sitive to the signal interferences. Such interferences are in-
terpreted as fast transitions and are amplified in the denoised
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signal. This effect degrades the useful part of the signal and
so its correlation with the original signal.

On the contrary, the TFDO has a better signal shape–
preserving behavior. Indeed, the signal is not distorted by
the use of a FIR filter and the denoised signal is still highly
correlated with the original signal. However, the fractional
Fourier transform introduces false transients which are due to
a side–effect. This may explain the poor correlation perfor-
mances of the TFDO above −20 dB since this effect cannot
be neglected anymore for high SNRin. This should be easily
compensate by means of a zero–padding method.

Fig. 7 shows the mean estimation error of the TOA,
defined as the number of false TOA detection, versus the
SNRin.

As previously explained, the WPD–based denoising
method leads to a poorest estimation of the TOA than with
no denoising procedure. Since the useful part of the signal is
affected by the denoising, the matched filtering is corrupted
by false peaks.

The TFDO gives the best result. The mean estimation
error is improved which confirms the better signal shape
preservation behavior of the TFDO.

5. CONCLUSION

In this paper we have addressed the problem of denoising
signals in a multi–path environment. The starting point was
the usual denoising methods based on wavelet techniques.
As shown through an example, the WPD–based denoising
method is limited in the case of close multi–component sig-
nals.

As an alternative, we have proposed a new denoising tool
based on a unitary transform. In this new space an efficient
filtering method was applied.
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Figure 7: Mean estimation error versus SNRin.

The performances show improvements of matched filter-
ing processing when the signal has previously been denoised
by the proposed method.

In this work, we have voluntary focused on the class of
linear instantaneous frequency signals. In the future work,
we will generalize this concept for arbitrary time–frequency
contents.
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