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ABSTRACT

In a context of sleep researches, we need to estimate car-
diac and respiratory rhythms on 20-second epochs of a signal
giving the variations in radial arterial pressure. This signal is
amplitude and frequency modulated by cardiac and respira-
tory contributions. The technique we developped combines
an amplitude and frequency (AMFM) demodulation using
The Teager energy operator and an adaptive eigenvector de-
composition. The interest of the method lies in its indepen-
dence from artefacts obtained for reasonable calculation and
memory costs. Experimental results indicate a close corre-
spondence between estimated and reference values both for
cardiac and respiratory rhythms.

1. INTRODUCTION

1.1 Context of the study

Today, many people suffer from sleep disorders. The
only way to detect these disorders is to spend a whole night
in a sleep laboratory, connected to a specific sleep analysis
system called a polysomnograph. The night is quite unpleas-
ant for the patient as it is restrained with numerous wires, and
this can disturb the sleep pattern. Moreover it requires an ex-
pensive equipment and hours of a specialist to process the
night recordings, even with the help of an automatic scoring
system. An efficient help could be supplied by actimeters.
They consist of a wrist strap case that records wrist move-
ments. These devices can distinguish sleep from awakening
based on the fact that movements only occur during awaken-
ing. These devices provide interesting information on sleep
quality but not enough for the detection of several sleep dis-
orders [1, 2].
However, some other physiological data such as cardiac ry-
thm and respiratory signal vary according to sleep stages [3].
The researches we are leading aim to combine all these data
in order to develop an actimeter that can distinguish between
groups of sleep stages : Awake / Light Slow Wave Sleep /
Deep Slow Wave Sleep / Rapid Eye Movement (REM) sleep.
We use a wriststrap that records the wrist temperature, its
tigthtening strength, the wrist movements and the radial ar-
terial pressure variations. An example of this latter signal
is given in figure 1. Each peak corresponds to a heart beat.
In addition, a periodicity of about five seconds can be ob-
served. In fact, lungs volume influences the venous return of
the blood and so modulates the amplitude of the arterial pres-
sure. This phenomenon is at the origin of the observed peri-
odicity. Moreover, the rhythm of heart beats is modulated by
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Figure 1: Example of blood pressure variations signal

respiration. Indeed, the mechanical constraints imposed by
the lungs to the heart influence its rhythm. This phenomenon
is called the Respiratory Sinus Arrhythmia. Thus, cardiac
and respiratory information exist in the arterial pressure sig-
nal, by the way of its amplitude and frequency modulations.
The problem we had to solve was to find a method to estimate
cardiac and frequency rhythms from 20-second epochs of the
arterial pressure signal with the constraint to be as less com-
plex as possible, in terms of memory and computation, since
the system is to be embedded within a wrist strap watch.

1.2 Signal modelling

For the reasons given above, it is possible to model the
arterial pressure signal of figure 1 by an amplitude and fre-
quency modulated sinusoid as given below:

a(t)cos[φ(t)] = a(t)cos

(

ωct + ωm

∫ t

0
q(τ)dτ + θ

)

(1)

where q(t) ∈ [−1;1]. The amplitude modulation (a(t)) is
linked to the variations in the venous return while the fre-
quency modulation (q(t)) can be linked to the compression
of the heart operated by lungs.

1.3 Demodulation

One way to demodulate an AMFM modulated signal is to
use Teager-Kaiser energy operator. Its continuous definition,
applied to a continous signal named x(t) is [4]:

ψ [x(t)] =

(

dx(t)

dt

)2

− x(t)

(

d2x(t)

dt2

)

(2)

= [ẋ(t)]2 − x(t)ẍ(t). (3)

This operator can, on certain conditions, perform an ampli-
tude and/or a frequency demodulation. More precisely, this



operator can extract the amplitude modulant signal and the
instantaneous frequency signal from the modulated signal.

We describe in this paper how we used Teager operator
and an adaptive eigenvector decomposition to estimate car-
diac and respiratory rhythms. The following part presents
the flowchart of the method, and each step is detailed. Re-
sults are given in section 3.

2. PROCESSING LINE

The system we used to retrieve cardiac and respiratory
rhythms from the arterial signal is given in figure 2.

2.1 General overview

The arterial signal is bandpassed in order to limit the
influence of noise. Next, an AMFM demodulation is per-
formed to get the instantaneous frequency of the signal,
which mean value gives an estimation of the cardiac rhythm.
This latter is then used by an adaptive finite impulse response
(FIR) filter to suppress the cardiac component in the origi-
nal signal. Finally, another adaptive operation estimates the
maximum eigenvector of the residual signal (r(t)). A sim-
ple period estimation of this latter gives the respiratory fre-
quency.

2.2 Cardiac frequency estimation

Let us examine how an AMFM demodulation can be per-
formed using Teager operator. Only a quick overview is
given here and interested readers can find details in [4, 5].

2.2.1 Theoretical algorithm

The expression of an AM-FM modulated signal, x(t), is
given in equation (1). Maragos et al. demonstrated that, if
2ω2

a + 0.5ωmω f µq ≪ (ωc −ωm)2, then :

ψ [x] ≈ a2(t)ωi(t) , in average (4)

where ωa (respectively ω f ) is the maximum angular fre-
quency in the spectrum of the amplitude (respectively fre-
quency) modulant a(t) (respectively q(t)). ωm is the fre-
quency modulation index and ωc is the angular frequency of
the carrier. Moreover, it is shown in [4, 5] that if the follow-
ing constraints, where O(z) means the magnitude order of z,
are fulfilled:

O(ωaω3
i ) ≪ O(ω4

i ) (5)

O(ωmω f ω2
i ) ≪ O(ω4

i ) (6)

O(ω2
f ω2

i ) ≪ O(ω4
i ) (7)

then we have ψ [ẋ(t)]≃ a2(t)ω4
i (t) and instantaneous fre-

quency and amplitude can be estimated by:

ωi(t) ≃

√

ψ [ẋ(t)]

ψ [x(t)]
(8)

|a(t)| ≃
ψ [x(t)]

√

ψ [ẋ(t)]
(9)

Thus, a(t) is directly linked to the respiratory signal and
ωi(t) = ωc + ωmq(t) is an image of the respiratory signal,
centered on cardiac frequency.

2.2.2 Discrete Algorithm

Notice that above-mentionned considerations deal with
continuous signals. Several algorithms have been devel-
opped for discrete ones and we chose to use DESA-1a [5]. In
this algorithm, x(t) and its derivative ẋ(t) are replaced with:

x(t) 7−→ x(n) (10)

ẋ(t) 7−→ (x(n)− x(n−1))/Ts (11)

where Ts is the sampling frequency. In this configuration,
ψ [x(t)] becomes the following ψ [x(n)] :

ψ [x(n)] =
(

x2(n−1)− x(n)x(n−2)
)

/T 2
s (12)

2.2.3 Theoretical conditions

However, AMFM demodulation can only be performed
if constraints (5), (6) and (7) are fulfilled. Yet, in our ap-
plication, the first one and the last one are not. However, in
a previous study [6], we reported that the error made in the
demodulation step was not annoying, since we are just inter-
ested in the mean value of the instantaneous frequency.

2.3 Cancellation of the cardiac component
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Figure 3: A 20-second epoch of the arterial pressure varia-
tions signal

Once cardiac rhythm is estimated, the cardiac component
is suppressed from the arterial signal. Technically, a sinusoid
at cardiac frequency (Fc(n)) is generated and a half-a-second-
length adaptive FIR filter, using an NLMS algorithm, adapts
it to the original signal in such a way that the residual signal
r(n) is mainly composed of the respiratory signal. Figure
4 shows the output of this step, when applied to the signal
given in figure 3. As one can see, the respiratory frequency
is given by the main spectral component of the signal. We
chose not to use a Fast Fourier Transform for its computation
and memory costs. Nor could we use a simple technique
such as zero-crossing since, depending on how efficient the
cardiac cancellation step has been, respiratory contribution is
not always as important and readable as the one of figure 4.
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Figure 4: Residual signal r(t) after the cancellation of car-
diac contribution in the signal given in figure 3



Figure 2: Processing line for the estimation of cardiac and respiratory frequencies

2.4 Respiratory frequency estimation

An interesting way of estimating the maximum con-
tribution of a signal is given by the Kahrunen-Loeve
decomposition. This latter indicates that a L-length signal

U(n) can be re-written as following : U(n) = ∑L−1
l=0 cl(n)ql ,

where ql are the eigenvectors of the covariance matrix
R(n) = E

[

U(n)UT (n)
]

and cl are given by cl = qT
l U(n) for

any l ∈ [0,L−1].
An approximation Û(n) of U(n) can be obtained by sum-
ming only the p first eigenvectors, associated to the p

largest eigenvalues : Û(n) = ∑
p−1
l=0 cl(n)ql . Thus, only

the components associated with the largest eigenvalues,
and representing the major part of information, are kept.
Details are truncated. In our application, we assess that
the respiratory frequency represents the major component
of U(n) and we isolate it by keeping only the eigenvector
associated to the largest eigenvalue of the decomposition
(p = 1). We will refer to it as the maximum eigenvector. The
problem is now to compute it efficiently and fast enough.
Let us examine the system of figure 5. In
this system, y(n) = HT (n)U(n) where U(n) =
[u(n),u(n−1), . . . ,u(n−L+ 1)], with L being the fil-
ter order and H(n) = [h0(n),h1(n), . . . ,hL−1(n)], the filter
weights. We define the constraints d(n) = 0 and ‖H(n)‖= 1,
for any n. Now, let us examine the variance of the output:

E[y2(n)] = HT (n)E
[

U(n)UT (n)
]

H(n)

= HT (n)R(n)H(n)

=
HT (n)R(n)H(n)

HT (n)H(n)
,as‖H(n)‖ = 1 ∀n (13)

The right term in expression (13) is called Rayleigh quotient.
Yet, a known mathematical result about it indicates that for a
symmetrical R matrix which eigenvalues are λmax,...,λmin:

λmax ≥
HT RH

HT H
≥ λmin ,∀H 6= 0 (14)

Thus, if at a time n, E
[

y2(n)
]

is maximized, then we have

E[y2(n)] = λmax = HT (n)R(n)H(n). And using Lagrange

Figure 5: Adaptive maximum eigenvector estimation

multipliers, it can be demonstrated the following equations:

λmax = HT
max R Hmax (15)

R Hmax = λmax Hmax (16)

and we deduce from equations (15) and (16) that when
E

[

y2(n)
]

is maximized, H(n) is the eigenvector associated

with λmax that is to say the maximum eigenvector. The way
we maximized E[y2(n)] is the gradient method. For each new
sample u(n), H(n) is adjusted in the following way:

G(n) = H(n)+ µ
∂y2(n)

∂H(n)

= H(n)+ µ y(n) [U(n)− y(n)H(n)] (17)

H(n + 1) =
G(n)

‖G(n)‖
(constraint) (18)

Provided µ and the filter order are correctly chosen, the con-
vergence is obtained and H(n) is an estimation of the main
component of U(n). This technique, applied to the signal
given in figure 4 yields the estimation of figure 6. Then, a
simple method such as a period estimation can provide a pre-
cise estimation of its frequency. Notice that the higher the
sampling frequency is, the more precise the estimation is.

3. RESULTS

To asses the quality of the estimation, we developped
a specific wrist strap. This latter recorded the four signals
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Figure 6: Maximum eigenvector estimation of the signal
given in figure 4

detailed in section 1.1 at a sample frequency of 128Hz on a
32Mo SmartMedia card. Cardiac and respiratory reference
frequencies were given by a medical polysomnograph.
Estimations and comparisons were made off-line. In the
results presented here, we used a 50-order NLMS filter for
cardiac cancellation with an adaptive step size of 0.8 and a
800-order filter with a step size of 10−3 for the maximum
eigenvector estimation.
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Figure 7: Reference value of cardiac frequency (up, in beats
per minute) and estimation error (down, in %) during a night
recording

Figure 7 gives the reference values (up, in beats per
minute, bpm) and estimation errors (down, in %) of cardiac
frequency led on a night recording. Notice that some parts of
the signal are not analysed because of movements. It can be

noticed that the mean relative error, given by (F̂c −Fc)/Fc,
is small. Indeed, it is 4% that is to say cardiac estimation is
overestimated of 4%. The standard deviation is 7% which
indicates that estimation errors are mainly around this mean.
Moreover, it can be observed that these errors do not depend
on cardiac rhythm.
Similar behaviour is observed in figure 8 representing the es-
timation of respiratory frequency. We found a mean overes-
timation of 4% and a standard deviation of 14%.

4. CONCLUSION

In this article a new technique to estimate cardiac and
respiratory frequencies from an arterial pressure signal has
been presented. Even if results given here were made us-
ing a high sampling frequency, some preliminary results, not
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Figure 8: Reference value of respiratory frequency (up, in
Hz) and estimation error (down, in %) during the same night
recording

printed here, indicate that the same behaviour can be ob-
tained at much lower sampling frequencies. Nevertheless,
it is to be noticed that the lower the sampling frequency is,
the less precise the estimation of respiratory frequency is.
This cardiac and respiratory frequencies estimator will be
used in an automatic and portable sleep scoring system cur-
rently being developped. This latter, as comfortable as an
actimeter will be more powerfull as we hope making it able
to distinguish between wakefullness, light sleep, deep sleep
and REM sleep. Such a system can be usefull for detecting
sleep disorders as well as for everyday life allowing to im-
prove one’s well-being by monitoring one’s own sleep.
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