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ABSTRACT

This paper presents a novel method to control the number of cross-
validation repetitions in sequential forward feature selection algo-
rithms. The criterion for selecting a feature is the probability of
correct classification achieved by the Bayes classifier when the
class feature probability density function is modeled by a single
multivariate Gaussian density. Let the probability of correct clas-
sification achieved by the Bayes classifier be a random variable.
We demonstrate by experiments that the probability density func-
tion of the latter random variable can be modeled by a Gaussian
density. Based on this observation, a method for reducing the
computational burden in sequential forward selection algorithms
is proposed. The method predicts the number of crossvalidation
repetitions by employing a t-test to guarantee that a statistically
significant improvement in the probability of correct classification
is obtained by increasing the number of selected features. The
proposed method is twice feaster than the sequential forward se-
lection algorithm that uses a fixed number of crossvalidation repe-
titions and it maintains the performance of the sequential floating
forward selection algorithm.

1. INTRODUCTION

To estimate the probability of correct classification achieved by
the Bayes classifier one usually divides the available data-set into
a set used for designing the classifier (i.e. the training set) and
a set used for testing the classifier (i.e. the test set). There are
methods frequently employed to estimate the probability of correct
classification, namely the resubstitution method [1], the leave-
one-out method (or Jacknife test) [2], and the crossvalidation
method [3, 4].

The resubstitution method uses the whole data-set for training
and testing the classifier resulting in a biased estimate of the proba-
bility of correct classification. The leave-one-out method alleviates
the lack of independence between the training set and the test set in
the resubstitution method, because the training is performed using
all the samples of the data-set but one. The latter is used for testing.
The procedure is repeated for all the samples of the data-set result-
ing in a long execution time. The crossvalidation method reduces
the high computational burden of the leave-one-out method, as it
chooses randomly a number of samples greater than one from the
data-set to construct the test set and uses the remaining samples for
training the classifier. This procedure is repeated for several times
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defined by the user and the estimated probability of correct classi-
fication is the average correct classification rate for all repetitions.
The number of crossvalidation repetitions is usually set between
10 and 100. In this paper, the number of crossvalidation repetitions
in sequential forward selection algorithms is controlled through a
t-test that guarantees statistically significant improvements in the
probability of correct classification for the Bayes classifier, when
new features are added. The method results in low computational
demands while maintains the same high accuracy achieved by the
sequential floating forward selection algorithm for a fixed number
of crossvalidation repetitions.

The outline of the paper is as follows. In Section 2, the data ex-
tracted from the Danish Emotional Speech (DES) database [5] are
briefly described. The prosody features extracted from the speech
utterances are presented in Section 3. Section 4 treats the proba-
bility of correct classification achieved by the Bayes classifier as
a random variable and studies its distribution with respect to the
number of crossvalidation repetitions and the selection of the fea-
ture set. Based on the observations of Section 4, a mechanism that
controls the number of crossvalidation repetitions is developed in
the next section. The mechanism is incorporated into the sequen-
tial floating forward selection (SFFS) algorithm and the sequential
forward selection (SFS) algorithm to speed up their execution. A
comparison of the time savings between the proposed variant of
SFS algorithm and the SFS for a fixed number of crossvalidation
repetitions is reported in Section 6. We also demonstrate that the
proposed SFFS variant maintains the performance achieved by the
SFFS algorithm for a fixed number of crossvalidation repetitions.
Finally,conclusions are drawn in Section 7.

2. DATA

The audio data used in the experiments consist of 1300 utterances,
800 more than those used in [6], that are manually extracted from
DES. Each utterance is a speech segment between two silence
pauses. The 800 utterances, that are now included, are detached
from paragraphs, whereas the old 500 utterances corresponded to
isolated words and sentences. The utterances are expressed by four
professional actors, two males and two females, in 5 emotional
styles such as anger, happiness, sadness, surprise, and neutral.

3. FEATURE EXTRACTION AND PREPROCESSING

Pitch estimates are obtained from the peaks of the short-term auto-
correlation function of the speech amplitude. The short-term anal-
ysis is performed using windows of duration 15 msec. We assume
that pitch frequencies are limited to the range 60-320 Hz. For esti-



mating the 4 formants, we use a method based on linear prediction
analysis. The method finds the angle of the poles in theZ plane for
an all-pole model and considers the poles that are further from zero
as indicators of the formant frequencies. To estimate the energy, a
simple short-term energy function has been used. After the evalua-
tion of the primary raw features, secondary statistical features were
extracted from the primary ones. The statistical features employed
in our study are grouped in several classes. The speech features
computed and their corresponding indices can be found in [6].

Let X denote the feature set. Each feature Xk ∈ X , k =
1, . . . , 87 has its own dynamic range. Features with variance of
order 106 such as the fourth formant, have greater influence in the
classifier design than features with a variance of order 102 such
as the mean value of pitch. Thus, a linear transformation is ap-
plied to each one of the 87 features. Let ak = mini{Xki} and
bk = maxi{Xki} for i = 1, . . . , NS , where NS equals to the
total number of utterances. A linear transformation from [ak, bk]
to [0, 1] is applied for each Xk.

The exponentially distributed features may lead to an increased
computational time and underflow warnings, as they become too
dense near the lower bound which in our case is 0+. Accordingly,
after the linear transformation, we apply a logarithmic transforma-
tion to the exponentially distributed features.

4. VARIATION OF THE MEAN PROBABILITY OF
CORRECT CLASSIFICATION DURING

CROSSVALIDATION PROCEDURE

The probability of correct classification achieved by the Bayes
classifier that uses the feature set Z ⊆ X can be estimated by
crossvalidation for nrep repetitions using

Jnrep(Z) = 1− E[{ε(Z, Tr;Dr)}nrepr=1 ] (1)

where ε(Z, Tr;Dr) is the probability of error for the Bayes classi-
fier designed using Dr during training when it is applied to Tr . In
(1) the expectation is applied over the sequence of error probabili-
ties measured over Tr, r = 1, 2, . . . , nrep and the dependence of
Jnrep on the feature setZ is explicitly stated. 90% of the available
utterances are used to build Dr and the remaining 10% create Tr .
The training and the test sets are complementary.

Let the features Xk be treated as elements of a d-dimensional
random vector x (e.g. a pattern). Let Ωm denote the mth class,
P (Ωm) be the a priori probability of class Ωm, and pr(x|Ωm)
be the class conditional probability density function (pdf). At
each crossvalidation repetition r, we assume that the labels of the
training set are known, whereas the labels of the test set are un-
known. If the number of classes is c, the samples in the training set
Dr can be divided into c subsets Dr;m with cardinalities NDr;m ,
m = 1, 2, . . . , c, such that

NDr =
c∑

m=1

NDr;m . (2)

Since the labels of the training set are known the pdf pr(x|Ωm) of
each class Ωm, m = 1, 2, . . . , c, can be estimated.

The Bayes classifier assigns the pattern x ∈ Tr to Ωm if

P (Ωm) pr(x|Ωm) > P (Ωj) pr(x|Ωj) (3)

j = 1, . . . ,m − 1,m + 1, . . . , c. Let Lm be the region where
x is classified to Ωm and L = ∪cm=1Lm. We also define the

complement of Lm as Lcm = L − Lm. The probability of error
for the Bayes classifier is given by

ε =

c∑

m=1

P (Ωm)

∫

Lcm
pr(x|Ωm) dx. (4)

Let the pdf pr(x|Ωm) be modeled by a single multivariate
Gaussian density

pr(x|Ωm) =
exp

[
− 1

2
(x− µr;m)T Σ−1

r;m (x− µr;m)
]

(2π)d/2|Σr;m|1/2
(5)

where µr;m is the mean vector and Σr;m is the covariance matrix
of the feature vectors.

Let us treat the probability of correct classification achieved
by the Bayes classifier Jnrep(Z) as a random variable. Its pdf
f(Jnrep(Z)) for a particular feature set Z and several choices of
nrep is plotted in Figure 1 when the class pdfs pr(x|Ωm) are mod-
eled as Gaussian distributions (5). It is seen that Jnrep(Z) follows
a Gaussian distribution.
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Fig. 1. Probability density function of Jnrep(Z) for several
choices of nrep: (a) nrep=10; (b) nrep=50; (c) nrep=300; (d)
nrep=1000.

The pdf of Jnrep(Zi) for several feature sets Zi is plotted in
Figure 2 when nrep=1000. The pdfs marked by A,B,C corre-
spond to three emotional speech feature sets. For several other pdfs
that correspond to real feature sets, the peak at the mode of each
pdf is marked with ∗. Moreover, pdfs for artificially created fea-
ture sets whose class pdfs are modeled by (5) for five classes have
been created. For each pdf, the peak at its mode is marked with ◦.
It can be seen that the variance σ2(J1000(Zi)) = var{J1000(Zi)}
depends on the level of J1000(Zi)} as is quantified by its mean
value (i.e. the mode of the pdf)

µ(J1000(Zi)) = 1− E[{ε(Zi, Tr;Dr)}1000
r=1 ] = J1000(Zi). (6)

Let g(J1000(Zi)) be a polynomial of degree 3 fitted to the peaks
of f(J1000(Zi)) in mean squared error (MSE) sense. The variance
of J1000(Z) can be estimated by

σ2(J1000(Zi)) =
1

2πg2(J1000(Zi))
(7)
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Fig. 2. Probability density function of J1000(Zi) for several fea-
ture set selections Zi.

Let us assume that f(J) for infinite crossvalidation repetitions fol-
lows a Gaussian distribution with mean µ∞ and variance σ2

∞.
If the number of crossvalidation repetitions is set to nrep then
f(Jnrep(Z)) follows a Gaussian distribution with the same mean
µ∞ and variance

σ2(Jnrep(Z)) =
σ2
∞

nrep
. (8)

Let us estimate σ2
∞ by σ2(J1000(Z)). Then f(Jnrep(Z)) is a

Gaussian pdf with mean µ(J1000(Z)) and variance

σ2(Jnrep(Z)) =
1

2π nrep g2(J1000(Z))
. (9)

If our aim is to keep the variance σ2(Jnrep(Z)) constant, i.e.

σ2(Jnrep(Z)) = γ (10)

the number of crossvalidation repetitions should be set equal to

nrep =
1

2π γ g2(J1000(Z))
. (11)

For example, by inspecting Figure 2, it can be seen that the number
of crossvalidation repetitions estimated by (11) for the feature set
B, that gives a mean probability of correct classification equal to
0.38 when employed in the Bayes classifier, is smaller than that
for the feature set C for which the Bayes classifier attains a mean
probability of correct classification equal to 0.64.

In the following, we are interested in testing the hypothesis

Jnrep1(Z1) > Jnrep2(Z2). (12)

This is accomplished by using the test statistic

q =
Jnrep1(Z1)− Jnrep2(Z2)√
σ2
Jnrep1(Z1)

nrep1
+

σ2
Jnrep2(Z2)

nrep2

=
Jnrep1(Z1)− Jnrep2(Z2)√

2 · γ

(13)

which is distributed approximately as Student’s t-statistic with a
number of degrees of freedom equal to

κ =

[
1

nrep1
+ 1

nrep2

]2

1
nrep12(nrep1−1)

+ 1
nrep22(nrep2−1)

. (14)

The hypothesis (12) is accepted when q > t1−a(κ) where a equals
0.05. The test-statistic depends only on the distance between the
corresponding probabilities of correct classification and it is greater
when γ becomes smaller. The user selects γ with respect to the
computation speed, as it can be inferred from (11). When γ be-
comes smaller the number of crossvalidation repetitions nrep be-
comes greater and accordingly the computational time increases.

5. APPLICATION TO SEQUENTIAL FEATURE
SELECTION ALGORITHMS

In this section, we will augment the sequential forward feature se-
lection algorithms, either the standard SFS or its floating variant
SFFS, by a mechanism that controls the number of crossvalida-
tion repetitions based on the analysis of Section 4. The SFS con-
sists of a forward step which is as follows: starting from an ini-
tially empty set of features Z0, at each forward (inclusion) step
at the level l we seek the feature X+ ∈ (X − Zl−1) such that
for Zl = Zl−1 ∪ {X+} the probability of correct classification
achieved by the Bayes classifier J(Zl) is maximized. In addi-
tion to the aforementioned inclusion step the SFFS algorithm [7]
applies a number of backward steps (exclusions) as long as the re-
sulting subsets are better than the previously derived ones at this
level. Consequently, there are no backward steps at all when the
performance cannot be improved. The exclusion step is as follows.
We exclude at level l those Z− ∈ Zl as long as the correct classifi-
cation of the Bayes classifier for the feature setZ−l = Zl−{Z−},
J(Z−l ), is greater than J(Zl).

The goal at level l is to find which non-selected feature X ∈
(X − (Zl−1)) yields the greatest improvement in the probability
of correct classification for the Bayes classifier among the non-
selected features. That is, the feature that yields

Jmax = max
X∈(X−Zl−1)

Jnrep(Zl−1 + {X}). (15)

If nrep is a large number, then Jnrep(Zl−1 + {X}) is an accu-
rate estimate of the maximum probability of correct classification
one might expect from the Bayes classifier. But the computation
is time consuming. If nrep is small, Jnrep(Zl−1 + {X}) is com-
puted faster, but it is not accurate.

In the proposed method, the number of crossvalidation repe-
titions nrep in (15) is predicted by (11) from the first 10 cross-
validation repetitions for the feature set (Zl−1 + {X}) and it is
denoted as n̂rep. µ(J1000(Zl−1 + {X})) can be replaced with
µ(J10(Zl−1 + {X})), because the sample mean does not change
dramatically by varying the number of crossvalidation repetitions
as can be seen in Figure 1.

Let us separate the features X ∈ (X − Zl−1) in potentially
expressive features and potentially bad features. The former fea-
tures yield Jnrep1(Zl−1 + {X}) ≥ Jn̂rep(Zl−1), while the lat-
ter ones consistently yield Jnrep2(Zl−1 + {X}) < Jn̂rep(Zl−1)
where 10 < nrep1, nrep2 < n̂rep. We propose to formulate a
t-test in order to test the hypothesisHA

0 : Jnrep2(Zl−1 +{X}) <
Jn̂rep(Zl−1) at 95% significance level for a small number of rep-
etitions (e.g. nrep2=10). If the hypothesis is accepted, we discard



the feature X . Otherwise, we perform more repetitions checking
each time the validity of the hypothesis HA

0 . If nrep2 has reached
n̂rep then we perform another t-test to check whether the hypoth-
esis HB

0 : Jn̂rep(Zl−1 + {X}) ≥ J ̂nrep′(Zl−1) can be accepted.
If HB

0 is accepted then the feature X is added to Zl−1. Figure 3
explains in detail the proposed mechanism to be incorporated in
SFS or SFFS algorithms.

Initialize
Set Jmax = JnrepA(Zl−1 + {X1}) where X1 ∈ (X − Zl−1),
Xopt = X1. nrepA is calculated from (11): nrepA =
[2π · g2(J10(Zl−1 + {X1})) · γ]−1

Loop 1: For all X ∈ (X − Zl−1 − {X1}),
nrepA = [2π · g2(J10(Zl−1 + {X})) · γ]−1

nrep = 10
Loop 2: while nrep ≤ nrepA

Test HA
0 : Jnrep(Zl−1 +X) < Jmax at 95%

significance level.
if H0 is accepted, no further crossvalidation repetitions are
required so we proceed to the next non-selected feature.
go to Loop 1
end if
if H0 is rejected then the feature X might improve
J . More repetitions are need to validate its usefulness.
nrep = nrep+ 1 end if

end for Loop 2
So, feature X with JnrepA(Zl−1 + {X}) was never rejected
for nrepA crossvalidation repetitions, but is it actually better
than the best feature found up to now Xopt that achieves Jmax?
Test HB

0 : JnrepA(Zl−1 +X) > JmaxnrepB with a two sided
t-test at 95% significance level using the test statistic (13).
if HB

0 is accepted then,
Jmax = JnrepA(Zl−1 + {X})
Xopt := {X} end if

end for Loop 1
X+ := Xopt // This feature must be included

Fig. 3. Algorithm to determine the best feature among the non-
selected ones with low computational cost while maintaining high
accuracy.

6. RESULTS

To demonstrate the usefulness of the proposed method we compare
the SFS and SFFS for fixed number of 70 crossvalidation repeti-
tions against our variants of SFS and SFFS with variable number
of crossvalidation repetitions up to 70. To evaluate the speed of the
proposed method, we compare the execution time needed for our
variant of SFS against the execution time needed for the SFS with
a fixed number of crossvalidation repetitions. SFS is more suit-
able for speed evaluation than SFFS, because the former employs
a fixed number of forward steps. The results are shown in Table 1.
The proposed method is twice faster than the ordinary SFS. In or-
der to determine the accuracy of the proposed method, we com-
pare the probability of correct classification achieved by the Bayes
classifier when the ordinary SFFS algorithm with a fixed number
of crossvalidation repetitions is employed with that when the pro-
posed variant of SFFS is used. SFFS is preferred than SFS for

accuracy comparison, because the former is not sensitive to nest-
ing problems. As can be seen from Table 2 there is no performance
deterioration.

Table 1. Time lapsed in secs for SFS.
Data set SFS SFS with t-test
500 utterances 2547 1231
1300 utterances 2710 1159

Table 2. Probability of correct classification for SFFS.

Data set SFFS SFFS with t-test
500 utterances 0.563 0.558
1300 utterances 0.485 0.487

7. CONCLUSIONS

In this paper, we studied the distribution properties of the proba-
bility of correct classification achieved by the Bayes classifier and
demonstrated by experiments that it follows a Gaussian distribu-
tion. We have proposed a t-test that can be incorporated within the
SFFS or SFS algorithms to control the number of crossvalidation
repetitions. The proposed SFS variant is twice faster than the SFS
algorithm for a fixed number of crossvalidation repetitions. More-
over, the proposed SFFS variant maintains the same accuracy with
the SFFS for a fixed number of crossvalidation repetitions. In all
the cases, the class pdfs are modeled by a single multivariate Gaus-
sian density. The proposed method can be applied to other sequen-
tial forward or backward feature selection algorithms as well.
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