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ABSTRACT
This study is concerned with reconstruction of complex-valued
components comprising a linear mixing model of unknown real-
valued sources, given a set of their complex-valued mixtures. We
adopt previous results in the area of Blind Source Separation (BSS)
of linear mixtures, based on sparse representation by means of a
multiscale framework such as wavelet packets, and exploit the prop-
erties of sparse representation obtained by projection onto a proper
space. We propose two techniques, developed for dealing with
complex-valued mixtures of real sources and incorporate sparsity-
dependent clustering via projection onto a proper space; one onto
polar coordinates, and the other onto cartesian coordinates. We de-
scribe various aspects of the proposed techniques, and present an
experiment of noisy mixtures of images.
Keywords: Blind Source Separation, Complex-Valued Mixtures,
Sparse Representation, Multiscale Transforms, Wavelet Packets.

1. INTRODUCTION

Blind separation of mixtures of images is an essential processing
technique, required in various practical applications, e.g. separa-
tion of an image from reflections superimposed by semireflections
[1]. In some applications such as MRI and Radar, the mixtures are
complex although the sources are real. Thus, in such cases, given N
linear mixtures of M signals or images:

x(k) = As(k)+n(k) k = 1,2 , . . . , (1)

where x(k) and n(k) are N ×1 complex vectors, s(k) is M×1 real
vector and A is a N ×M complex matrix consists of unknown val-
ues and N ≥ M. The unknown components si(k) of s(k), referred
to as ‘sources’, are usually assumed to be statistically and indepen-
dent [2]. This assumption can, according to the approach adopted
in this paper, be relaxed. The observed ‘mixtures’ xi(k), are possi-
bly corrupted by additive noise n(k). The independent variable k
represents in our case spatial coordinate(s).

The common approach to solving the inverse problem (i.e.
sources recovery) is based on estimation of the mixing matrix A or,
equivalently, its inverse matrix W which yields the best estimate of
the sources by means of its product with the mixtures:

ŝ(k) = Ŵx(k) k = 1,2 , . . . . (2)

Several approaches have been suggested for this purpose (see for
example [3, 4, 5]). Note that the recovery of the mixing matrix is
up to column permutation and scaling (or equivalently sources per-
mutation and scaling), since these operations can be interchanged
between the unknown sources and the matrix.

The main objective of this paper is to advance a processing
technique, suitable for separation of complex-valued mixtures of
real sources. We address, however, also the problem wherein the
sources are complex as well.
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2. PRELIMINARIES

Whereas the histograms of gray levels of natural image sources or
mixtures are broadly distributed, indicating that images are highly
correlated, projection onto a sparse space of representation decorre-
lates the images and, consequently, the pdf of a projected source (or
mixture) coefficients decays rapidly. Thus, thresholding the values
of the coefficients of the transformed signals yields sparse represen-
tations. Indeed, the probability of a coincidence of the transformed
images approaches zero, since the cross-correlation is practically
zero. This sparse representation permits a simple geometric estima-
tion of the mixing matrix [3]. Let us use the basis of decomposi-
tion functions, {jg (k)}g∈W, in the representation of the real sources
{sm(k)}M

m=1:

sm(k) = å
g∈W

cmg jg (k) k = 1, . . . ,M , (3)

where the functions (features) jg (k), called atoms or elements of
the representation space, represent each source sm by its corre-
sponding real-valued decomposition coefficients cmg . Sparsity, can
therefore be expressed as an appropriate representation such that for
each source sm there exists a subset Gm ⊂ W, corresponding to the
function set {jg (k)}g∈Gm where:

|cmg | � |cng | ∀g ∈ Gm , m 6= n . (4)

Separation performance strongly depends on sparseness properties
of the representation, such as the relative sizes of the sparse sets, i.e.
|Gm|/|W|, the ratios |cmg |/|cng | when g ∈ Gm, m 6= n and the ratios
|cmg |/|cmr | when g ∈ Gm, r 6∈ Gm.

3. THE PROPOSED TECHNIQUES

3.1 Sparse Scatter Plots in Polar Coordinates

The complex mixing matrix in polar coordinates is:

A =







a11 . . . a1M
...

. . .
...

aN1 . . . aNM






=







r11e jq11 . . . r1Me jq1M

...
. . .

...
rN1e jqN1 . . . rNMe jqNM







ri j > 0, qi j ∈ [02p] , (5)

where qi j as well as ri j are unknown. We apply a transformation
(3) that yields a highly-sparse representation:

x̃(g) = As̃(g)+ ñ(g) g = 1,2 , . . . , (6)

where the m-th element of s̃(g) is the decomposition coefficient
of the source sm(k), corresponding to the representation function
jg (k):

s̃(g) =







c1g
...

cMg






. (7)



Since it is a sparse representation, for each source sm there exists a
group Gm where:

|cmg | � |cng | ∀n 6= m, g ∈ Gm , (8)

i.e. only one coefficient of s̃(g) is dominant.
By using (6),(7),(8), and taking the absolute values (element-

wise) of the transformed mixtures x̃(g), we obtain:

|x̃(g)|•
4
=







|x̃1(g)|
...

|x̃N(g)|







≈



















∣

∣

∣
cm0g r1m0 e jq1m0 +

M

å
m 6=m0

cmg r1me jq1m

∣

∣

∣

...
∣

∣

∣
cm0g rNm0 e jqNm0 +

M

å
m 6=m0

cmg rNme jqNm

∣

∣

∣



















≈










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∣
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∣

∣

∣

...
∣

∣

∣
cm0g rNm0 e jqNm0

∣

∣

∣
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∣

∣

∣

...
∣

∣

∣
cm0g rNm0

∣

∣

∣


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=
∣

∣

∣
cm0g

∣

∣

∣




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r1m0

...
rNm0






, g ∈ Gm0 ,

(9)

where the first approximation disregards the noise effect and the
second approximation is justified for high sparsity related to the
subscript g . From (9) we infer that the scatter of the absolutes’ vec-
tor |x̃(g)|• is clustered around large values, along the orientation
corresponding to the m0-th column of the matrix |A|• (element-
wise ‘absolute matrix’ of the complex mixing matrix A). When
there is absolutely no knowledge about the subsets {Gm}

M
m=1, we

perform the absolutes’ scatter-plot for all the subscripts {g : g ⊂ W}
on the same coordinate system of the absolute-values’ space. This
results in clustering along M orientations, corresponding to the
columns of |A|•, as is demonstrated in Fig. 1.

Figure 1: Scatter plot in absolute-values’ space. M = 2,N = 3.

If the orientations corresponding to columns of |A|• are sufficiently
spaced apart in the sense of not being collinear or wrapped by the
previous approximations, then the orientations are distinguishable
and a clustering algorithm can be performed to extract the orienta-
tions of the absolutes. Each additional (and-not-ill) observed mix-
ture contributes to the distinguishing ability by adding dimension to
the absolute-values’ space.

A similar view holds for the element-wise argument of x̃(g):

arg{x̃(g)}•
4
=







arg{x̃1(g)}
...

arg{x̃N(g)}







≈



















arg

{

cm0g r1m0 e jq1m0 +
M

å
m 6=m0

cmg r1me jq1m

}

...

arg

{

cm0g rNm0e jqNm0 +
M

å
m 6=m0

cmg rNme jqNm

}



















≈











arg
{

cm0g r1m0 e jq1m0

}

...

arg
{

cm0g rNm0 e jqNm0

}











= arg{cm0g}+







q1m0

...
qNm0






, g ∈ Gm0 .

(10)

Therefore, the scatter of arg{x̃(g)}• is clustered around the point
which corresponds to the m0-th column of the matrix arg{A}•

(element-wise argument of the complex mixing matrix A) and its
p shifted bonus (since cmg are real, arg{cmg} = 0 or p). An im-
portant matter is that by performing the argument scattering of each
absolute-orientation scatter subset, previously clustered, in a dif-
ferent coordinate system, we can ascribe each argument-vector to
its absolute-orientation. This prevents uncertainty in assignment of
each argument-vector to its absolute-orientation.

3.1.1 Sparsity Dependent Clustering

Since the approximations in (9) and (10) are justified for high spar-
sity related to the subscript g , the clustering should be sparsity-
dependent. In this case, high sparsity of scatter points is related
to their vicinity to the estimated orientation and magnitude of their
projection onto orientational cluster. Therefore a suitable sparsity
consideration should be applied in order to extract the absolute ori-
entations and their argument-vectors. One possibility for such a
consideration is to examine the histogram of orientations in the scat-
ter space of |x̃(g)|• (demonstrated in Fig. 4) and then extract its M
centers. The scatter points which are related to each center can then
be taken for extraction of their center argument-vectors.

3.1.2 Image Source Recovery

The meaning of the argument-vector estimation uncertainty mod(p),
is that the estimation of each complex column vector of the mixing
matrix A, (r1me jq1m , . . . ,rNme jqNm )T is up to switching with its op-
posite vector, i.e. (−r1me jq1m , . . . ,−rNme jqNm)T . This is equivalent
to switching the sign of the m-th source. In addition, each absolute-
vector estimation is up to positive scaling and lacks the ascription to
column-positioning in the mixing matrix A. Therefore, the union
of the above claims withstands the fact that the recovery is up to
permutation and scaling.
The estimated mixing matrix Â is obtained by assigning each es-
timated absolute-vector (r̂1m, . . . , r̂Nm)T to its estimated argument-
vector (q̂1m, . . . , q̂Nm)T :

(â1m, . . . , âNm)T = (r̂1me jq̂1m , . . . , r̂Nme jq̂Nm )T . (11)

We then use the Matlab’s matrix left division (Pseudo Inverse) to
recover the sources from the observed mixtures, i.e.:

ŝ(k) = Â\X(k) k = 1,2 , . . . . (12)



3.2 Sparse Scatter Plots in Cartesian Coordinates

The complex mixing matrix in cartesian (real-imaginary) coordi-
nates is:

A =







a11 . . . a1M
...

. . .
...

aN1 . . . aNM






=







a11 + jb11 . . . a1M + jb1M
...

. . .
...

aN1 + jbN1 . . . aN1 + jbNM







ai j,bi j ∈ R , (13)

where ai j as well as bi j are unknown and i.i.d. As in section 3.1, we
applied a transformation (3) that yields a highly-sparse representa-
tion. Since the sources are real, each of their complex mixtures
is equivalent to a pair of (independent) mixtures, corresponding to
the real and imaginary parts of (1). Technically, we perform di-
rections clustering for separated scatter-plots of the mixtures’ real
and imaginary parts (as demonstrated in Fig. 2), thus recovering the
matrixes Re(A) and Im (A) up to column permutation and scaling.
Recovering the complex matrix A (still up to column permutation

Figure 2: Scatter-plots of the mixtures’ real and imaginary parts.
M = 2, N = 3.

and scaling) requires assignment of each real column to its correct
scaled imaginary column, so at first glance, those uncertainties seem
to be devastating. However, it can be easily solved since we can ex-
actly ascribe the real and imaginary data points to each other, this
enables tracing the correct assignment and scaling of real and imag-
inary columns, as can be induced from Fig. 3 which describes the
cartesian (Real/Imaginary) scatter points of high-sparsity related to
a subscript g by presenting the case of cng = 0 , cmg 6= 0 , ∀n 6= m
g ∈ Gm.
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Figure 3: Cartesian (Real/Imaginary) scatter points of high-sparsity
related to a subscript g in the case of cng = 0 , cmg 6= 0 , ∀n 6= m,
g ∈ Gm. N = 2.

4. EXPERIMENTAL RESULTS

We demonstrate the technique of scatter-plots in polar coordinates
(Section 3.1) through image-sources. Three synthetic complex-
valued mixtures of ‘Blond’ and ‘Brunette’, corrupted by i.i.d
complex-valued noise of 25dB S/N, are used in our separation pro-
cess. The absolute-value images of two of the three complex-valued
mixtures are depicted in Fig. 4.

Figure 4: Absolute-value images of two of the three complex-
valued mixtures (size: 256×256).

Two-dimensional wavelet packet decomposition is performed, us-
ing node (2,1) of the 5th-order Coifman Wavelets. Scatter points
of low norm (comprising the dark area in Fig. 6) are neglected and
the rest of the scatter points (about 30%) are taken to form a his-
togram of orientations in the absolute-values’ scatter space. The
histogram is then smoothed to extract the absolute-directions from
both its centers, as shown in Fig. 5.

Figure 5: Orientational histogram of scatter points in the absolute-
values’ scatter space.



Thus, an estimation of the true absolute-orientations can be made,
as shown in Fig. 6.

Figure 6: Absolute values’ scatter plot. The true orientations (solid)
and the estimated ones (dashed).

The arguments of scatter points which are highly related to the es-
timated orientations (about 0.07% of total) are then taken in order
to extract the estimated argument-vectors from their centers in the
argument-values’ Half-space (i.e. accounting for mod(p)), as shown
in Fig. 7.
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Figure 7: Argument-values Half-space scatter-plot. Clustered val-
ues are marked with a cross. Both concentrations are zoomed to the
right.

Assigning each argument-vector to its absolute-orientation is equiv-
alent to recovering the columns of the complex mixing matrix (up
to permutation and scaling). Using pseudo inverse, the source im-
ages are then recovered as well. Taking the absolute values of their
real part, and presenting the grayscale intensity of each recovered
source within its data range, scaling uncertainty becomes less sig-
nificant. Finally, de-noising filtering can be performed using any
knowledge of the sources and noise. In this example we performed a
low pass filtering. The recovered images, compared to their origins,
are presented in Fig. 8. A noise-free similar experiment, results
in estimated sources indistinguishable from their originals. Results
obtained with the noisy data can be improved by adaptive selection
of data subsets from different nodes.

5. DISCUSSION AND CONCLUSIONS

Sparse representation of complex-valued mixtures of images in po-
lar coordinates facilitates the development of new and efficient al-
gorithms for blind separation of image sources. Although the major
goal of this study is the application of our techniques to blind sepa-
ration of tissues using a set of MR images [7], we are mostly using

Figure 8: Recovered images (under 25 db S/N) compared to their
origins.

synthetic mixtures, where the ground truth is available. Based on
our experiments with such synthetic images we may conclude that
the proposed technique can also be applied to volumetric images
data and/or higher dimensional representations of images.
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