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ABSTRACT

We present in this paper an improvement for our previous
blind source separation of speech signals based on the joint
diagonalization of the time varying spectral matrices of the
observations and the use of energy profiles to handle the
problem of permutation ambiguity in the frequency domain.
Two new techniques are proposed to improve the estimation
of profiles which are used for permutation corrections. Sim-
ulations using real impulse response of acoustic room show
that these novel profiles estimation methods improve the ef-
ficiency of our algorithm, which performs well even in the
difficult reverberation environment characterized by long re-
sponse .

1. INTRODUCTION

Blind separation of convolutive mixture of speech signals has
been the subject of many researches [4,9, 11], but the perfor-
mance of the proposed algorithms in realistic setting is still
not quite satisfactory [3], due mainly to the long impulse re-
sponse of the mixing filter. Time domain approach would
be too computational costly and suffers from the difficulty of
convergence since it requires the adjustment of too many pa-
rameters. Frequency domain approach has the advantage that
it reduces the problem to a set of independent problems of
separation of instantaneous mixtures in each frequency bin,
but it creates the additional difficult problem of permutation
ambiguity. Further, since the finite Fourier transform tends to
produce nearly Gaussian variables [2], higher (than second)
order statistics in the frequency domain contain little use-
ful information for these separation problems. Fortunately,
speech signals are highly non stationary so one can exploit
this nonstationarity to separate their mixture based only their
second order statistics [6], which leads to a joint diagonal-
ization problem. This idea has been introduced by Para and
Spence [4], but these authors used an ad-hoc criterion, while
in our two earlier papers [7, 8], we use a criterion based on
the Gaussian mutual information and related to the maximum
likelihood. Such criterion has in fact been considered in [11],
but without using the nonstationarity idea.

The main problem in a frequency domain approach is to
resolve the permutation ambiguity. In [7, 8] two methods
are proposed, based on the continuity of the demixing filter
and on the use of source energy profiles (similar to an idea
in [1]), respectively. However, the use of profiles is based
on a very crude model for the time varying spectrum of the
source. In this paper we improve this model, leading to a
better permutation ambiguity resolution.

2. MODEL AND METHODS

Consider an acoustic situation in which K sensors re-
ceive signals from K sources. The observed sequences
{x1(#)},...,{xk(¢)} are assumed to be linear mixtures of
sources sequences {s;(7)},...,{sk(r)} with delay:
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where H;(n) are elements of the impulse response ma-
trix H(n) of the mixing filter. The goal is to recover
the sources through a demixing filter: the reconstructed
source sequences {y|(¢)},...,{yk(t)} are the components of
{y@t) =Y _ G(n)x(t —n)}, where G(n) is the impulse
response matrix of the filter and x(t) = [x(¢) --- xg(?)]T,
T denoting the transpose. In the blind context, the idea is
to adjust the filter such that {y;(¢)} are as mutually inde-
pendent as it is possible. In a second order approach, only
the inter-spectra between the reconstructed sources at ev-
ery frequency are needed to express dependence, but since
we are dealing with nonstationary signals, we shall con-
sider the time varying spectra, that is the localized spec-
tra around each given time point. It is precisely the time
evolution of these spectra which helps us to separate the
sources. From (1), the time varying spectrum of the vec-
tor observation sequence is Sx(z,f) = H(f)Ss(z, f)H*(f)
where H(f) = Yo _..e/>™/H(n) denotes the frequency re-
sponse of the mixing filter, Ss(¢, f) is the diagonal matrix
with diagonal elements being the time varying spectra of the
sources and * denotes the transpose conjugated. As in [7, 8],
we aim to make the spectrum of the reconstructed source vec-
tor G(f)Sx(t, f)G*(f) to be as close to diagonal as it is pos-
sible, according to the following diagonalization criterion:

Y {5 logdetdiag[G(f)Sx(r, /)G (/)] ~ logdet|G(7)] }
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where diag(-) denotes the operator which builds a diagonal
matrix from its argument and the summation is over the time
points of interest. A simple and very fast algorithm to mini-
mize this criterion has been already developed [5].

In practice, the spectrum S, (z,f) is estimated over a
(high resolution) grid of frequencies. It is important to have a
good estimator, since the final separation would depend on it.
We chose a new variant of the estimator used in [7, 8] which
has better performance (reducing side-lobe level). We form



the sliding short term periodogram using a Hanning taper
window

[ZHN -7

where Hy(t) = 1/2/(3N)[1 — cos(2mt /N + m/N)] for 0 <
t < N, 0 otherwise. The above periodogram will be averaged
over m consecutive equispaced points Ty, ..., T, yielding the
estimated spectrum at time (7) + T, + N —1)/2:
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The frequencies are taken to be of the form f =n/N, n =
0,...,N — 1, with N being chosen to be a power of 2 to take
advantage of the Fast Fourier Transform. The frequency res-
olution is determined by the taper window length N and the
time resolution by md where 6 = 7, — 7;,_;. Using 0 > 1
helps to reduce the computational cost but slightly degrades
the estimator: actually § can be a small fraction of N without
a significant degradation. Of course a compromise between
time and frequency resolution has to be made. Our method is
more flexible for adjusting these resolutions than that of [7,8]
and further helps to reduce the bias.

3. THE PERMUTATION AMBIGUITY PROBLEM

The advantage of the frequency domain approach, as ex-
plained in the introduction, comes however with a price: the
ambiguity of its solution. The joint diagonalization only pro-
vides the matrices G(f) up to a scale change and a permu-
tation: if G(f) is a solution then so is II(f)D(f)G(f) for
any diagonal matrix D(f) and any permutation matrix TI(f).
Thus, one only gets a separation filter of frequency response
matrix G(f) of the form II(f)D(f)H "' (f) where H(f) is
a consistent estimator of H(f) but II(f) and D(f) are arbi-
trary permutation and diagonal matrices. The scale ambigu-
ity is intrinsic to the blind separation of convolutive mixtures
and cannot be lifted, but the permutation ambiguity must be
reduced to a global ambiguity independent of the frequency.

Permutation ambiguity in convolutive separation is a dif-
ficult problem, especially in audio applications [3]. In the
literature several methods have been proposed to solve this
problem. One method constrains the separation filter to have
FIR support [11], others introduce some coupling between
solutions in frequency domain [1, 9] or otherwise using the
continuity of the frequency response [9, 11].

This paper extends and improves the method introduced
in [8], that exploits direct intrinsic properties of sounds
by constructing energy distribution profiles (in logarithmic
scale) and using them to lift the permutation ambiguity. The
main idea is that, for a speech signal at least, the energy
over different frequency bins appears to vary in time in a
similar way, up to a gain factor. For example, if a time
block contains a long period of pause, one would expect that
it energy would be nearly zero in all frequency bins. The
method in [8] exploits this idea by implicitly assuming a
model of time varying spectrum of the k-th source of the form
Sk(t, f) = exp[Ex(1)]S,.(f), where Ei(r) denotes the “profile”.
For uniqueness of the above representation, Ey(¢) shall be
constrained to satisfy Z?:] E(tj) =0, where1,...,7; denote
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the considered time points. One can then estimate Ey(t;) by

. Nt n
Ex(t)) = N V;)En(k;n/N) (lz, ﬁ) 2
E(tj,f) = logSk(t), f) — Zlogsk 1, f) (3)

where Sk(th f) is the k-th diagonal element of the matrix
G(f)Sx(t, f)G(f) and n(1;f),...,n(K; f) is a permutation
of 1,...,K, which corrects the permutation errors in the out-
put of the diagonalization algorithm so that S’ﬂ(k;f) (t1,f) is
indeed an estimate of the spectral density of the k-th source
at frequency f. Note that the scale ambiguity is automat-
ically eliminated, since this ambiguity amounts to adding
to logSi(;,f) a term depending only on f, which leaves
Ek(tj, f) unchanged. However the frequency permutation
corrections 7(1;n/N),...,n(K;n/N) are unknown. There-
fore, we proceed iteratively. We start with some initial per-
mutation corrections (7 (i;n/N) = i for ex.), compute the pro-
files as in (2), then update the permutation correction for each
frequency f = n/N by minimizing the criterion

Z Z (1, f )—Ec(1)]
over all possible permutations 7(1),...,m(K) of 1,...,K and
set the new permutation correction 7(1;f),...,n(K;f) to

be the one realizing the minimum. The profile is the re-
estimated and so on until convergence.

The model “Si(, f) = exp[Ex(r)]S;(f)” is however very
crude, as can be seen by examining the time-frequency spec-
trum of speech samples. In spite of this, the above method
works reasonably well, since this model only serves to make
permutation corrections. But the method can be improved by
adopting a more realistic model, as in this paper where we
allow the profile to depend on the frequency but only mildly.
Specifically, we now model Si(¢, f) as exp[Ex(t, f)]S,(f).
where Ey(t,f) is a slowly varying function of f for each
t and satisfies Y% | Ei(t,f) = 0. Note that if only the
last condition is required, the natural estimate of Ej(z,f)
would be En(k;f) (t,f) where Ei(t,f) is given by (3) and
n(1; f),...,m(K; f) is the permutation correction. By adding
the information of slow variation with respect to the fre-

quency variable, one is led to a second estimate Ek(t, f) for
E(t,f), which will be described below. The algorithm then
proceeds as before except that the permutation correction for
each frequency f = n/N is now updated by minimizing

Zé’ (1, f
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over all possible permutations 7(1),...,7(K) of 1,...,K and
set T(1; f),...,m(K;f) as the one realizing the minimum.

3.1 Estimation by moving average

One estimates the profile for the k-th source by taking the
moving average of the natural profile estimator after permu-
tation correction Ez . f)(t,n/N)



where T denotes the window width, assumed to be odd,
which controls the degree of smoothness of the estimator.

3.2 Estimation using Discrete Fourier Sequence (DFS)

Since E,,(khf) (t1,n/N) as a function of n (for fixed #;) is peri-
odic with period N, one can express it as a Fourier sum:

N—1

. n '
Eﬂ:(k,f) ([1, ﬁ) = ;) Creﬂﬂ:rn/N @)
where {Cp,...,Cy—1} is the discrete Fourier transform of
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In the representation (4) the terms correspond to indexes r
far from O and N induce rapid oscillations of the function.
Thus to estimate Ey(f;,n/N), one may simply suppress in this
representation the terms of index r for which min(r, N —r) >
L, L being a parameter controlling the degree of smoothness
of the estimator. Specifically, the estimator is given by

N n
Ek(thﬁ) =

Note that C, = Cy—_, so that the above right hand side is ac-
tually a sum of a constant and cosine functions.

C ejann/N
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4. DESIGN AND SIMULATION RESULTS

To validate our algorithm, we experiment with real acoustic
response impulse measured by McMaster University [10] to
hearing aid in BLISS project. The used response impulse
was measured in a 3.4m X 3.4m X 2.6m room. We chose
in this simulation one that corresponds to the combination:
angle 315° & 45°, height 18cm, distance 0.9m (measured
from KEMAR [10]). The length of the impulse respose is
truncated to 1024 lags after downsampling the speech source
signals to frequency 11025Hz. The signals have a duration
of about 2.98s. Figure 1 shows the impulse responses of the
mixing filter with all it’s echos.

We take as block length N = 2048 with an overlap of
1—(8—1)/N =75% (yielding 57 time blocks) and estimate
the spectral matrices by averaging over 5 blocks (m = 5). As
in [7, 8], we consider the performance index

r(f) = (GH)12(f)(GH)x (/)/[(GH) 1 () (GH)2 ()]

where (GH);;(f) is the i j element of the matrix G (f)H(f).

For a good separation, this index should be close to 0 or infin-
ity (in this case the estimated sources are permuted). When
r crosses the value 1, this means that a permutation has oc-
curred.

We will present, in follow, the results of DFS method.
The results for the “moving average” method are similar.
The DFS method has the advantage that it is easier to tune
since the parameter L should be quite small. Figure 2 plots
min(r, 1) and min(1/r,1) versus frequency (in Hz), before
(with old profiles estimation [8] applied in) and after apply-
ing the new method of profiles estimation (DFS with L = 3).
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Figure 1: Impulse responses of the considered real acoustic
filter
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Figure 2: Separation index (solid red) and its inverse (blue
dots) truncated at 1, before (upper panel) and after (lower
panel) applying the new permutation correction, frequency
in Hz

One can see that the new method eliminates many permuta-
tion errors (relative to a global permutation) which can not
be eliminated by the old method.

Figure 3 plots the distance Hl%l (f)— l%z(',f) || between
the two reference profiles (solid blue) together with the dis-
tances from a raw source profiles to it reference profiles

E(, £)—Ex(-, f)|l, k= 1 (point red), 2 (dotted black). It ap-
pears that our method should work well at higher frequency
where the two reference profiles are more separated.

The impulse response of the global filter (G« H)(n) is
shown in figure 4. One can see that (G« H);;(n) is much
smaller than (G *H)j2(n) and (G *H)zy(n) is somewhat
smaller than (G xH),; (), meaning that the sources are well
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Figure 3: Distances between reference profiles (solid blue)

and between a source profile and its reference profile (point
red and dotted black), frequency in Hz
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Figure 4: Impulse response of the global filter (G « H)(n)

separated (and permuted). This can be confirmed by look-
ing at the original sources, the mixtures and the separated
sources, displayed in figure 5 (noting that there is a global
permutation).

5. CONCLUSION

We have improved the blind separation of speech signals al-
gorithm in [8] by introducing two new profiles estimation
methods. The proposed algorithm is able to separate con-
volutive mixtures with fairly long impulse responses arising
from real acoustic environments that contain strong echos.
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