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ABSTRACT

In this paper, we address the problem of the estimation of chirp
signals in “€-contaminated” impulsive noise using Kalman filter-
ing technique. We consider an estimation method based on the ex-
act non linear state space representation of the chirp signal. The
observation noise’s probability density function is assumed to be
a sum of two-component Gaussians weighted by the probability of
appearance of the impulsive and gaussian noises in the observations.
We propose to use two extended Kalman filters (PEKF) operating
in parallel as an alternative to the usual methods which generally
use either clipping or freezing based algorithms. Simulation results
show that the PEKF compared to the robust extended Kalman fil-
ter (REKF) based on Huber’s function is less sensitive to impulsive
noise and gives better estimates of the chirp parameters.

1. INTRODUCTION

Chirp signals (also called polynomial phase signals of order 2) arise
in many natural phenomena like seismic and bat echolocation sig-
nals, but are mainly known in engineering applications such as in
radar, sonar and telecommunication. The estimation of chirp signals
is a well known problem in signal processing community and has
received considerable interest in literature. Several methods have
been proposed for the estimation of the parameters of chirp signals
affected by additive Gaussian noise. Most of these methods rely
on maximum likelihood principle (ML), LMS/RLS estimators, and
time-frequency representations [1].

In signal processing, a widely used approach to estimate the signal
parameters is the Kalman filter [2] which is the optimal tracking al-
gorithm when the signal models are assumed linear and both state
and observation noises are additive Gaussian [3]. When these as-
sumptions do not hold, that is when one have to tackle non linear
models, then the Extended Kalman Filter (EKF) [4] is used by con-
sidering a local linearization using first order Taylor expansion of
the non-linear equations. Many algorithms based on the EKF with
various configurations have been proposed. For instance, the au-
thors in [5] proposed a state space model obtained by incorporating
spatial information consisting of the corrupted signal and its de-
layed version using two sensors, then the chirp signal parameters
were estimated using two EKFs in cascade. Still, in many situation
the observation noise is non Gaussian. In [6], the authors consid-
ered the estimation of chirp signals in additive/multiplicative non-
Gaussian noise using ML and LSE estimators.

In this paper, we consider the estimation of the parameters of a
chirp signal corrupted by additive noise based on a state-space rep-
resentation using two Kalman filters operating in parallel. In our
approach, we consider the exact non linear state-space model for
mono-component chirp signal derived in [3], but we assume the ad-
ditive noise is impulsive with a non Gaussian distribution to obtain
a non linear/ non Gaussian state space model. It is well known
that impulsive noise due to natural phenomena or man-made appli-
cations [7] such as atmospheric disturbances affecting HF commu-

nication significantly degrades the performance of most frequency
tracking EKF based algorithms in which noise is assumed Gaussian
[8]. Many models for the impulsive noise can be considered such
as ¢-stable distributions which do not have a general closed form
distribution. A more practical model for the pdf of the impulsive
noise is the sum of two weighted Gaussian density function. One
way to use Kalman filtering in impulsive environment is by either
clipping the observation signal or by changing the Kalman gain with
respect to a defined threshold. In order to overcome the limitations
due to these techniques, we propose to use parallel Kalman filtering
whose principle is that each extended Kalman filter is tuned on one
Gaussian component and their estimates are weighted to produce
the final state estimate.

This paper is organized as follows. In section 2, we will present the
exact non linear state space modelisation of mono-component chirp
signal where the additive noise has a non Gaussian distribution. In
section 3, we describe the PEKF algorithm for the estimation of the
non linear/ non Gaussian state space model. Section 4 provides sim-
ulation results and comparison with respect to the robust extended
Kalman (REKF). Finally, we give some concluding remarks and
perspective work in section 5.

2. NON LINEAR/NON GAUSSIAN STATE-SPACE
REPRESENTATION OF CHIRP SIGNAL

We consider the discrete signal y(k) modeled by a polynomial phase
signal of order 2 : y(k) embedded in additive noise v(k) as given
below

y(k) :A(k)e{j¢(k)}+v(k) k=0,....N (D

where A(k) is the amplitude of the signal which can be constant or
time varying, and ¢ is a deterministic polynomial phase given by
%2
9(k)= K +Bk+y @

The parameters @, B and y are real coefficients.
In this paper we will consider the real part of y(k)

2(k) = R{y(k)} = A(k)cos(¢ (k) +n(k) ©)
and
n(k) = R{v(k)} )
The noise n(k) is modeled by

n(k) = r(k) +i(k) ©)

where r(k) is an additive Gaussian noise with zero mean and vari-
ance 612, and i(k) is the impulsive noise with a probability of appear-
ance equal to € and it is assumed to be a zero mean Gaussian noise
with variance 67 where (65 >> 7). Typically the ratio (67 /07)
is between 100 to 500 [9].



The probability density function (pdf) of the noise n(k) is given by
p(n(k)) = (1—€) A (0,06¢) + e (0,07) (6)

Figure 1 shows the pdf of the noise with respect to €.
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Figure 1: The pdf of the noise for different values of €

2.1 The exact Model

Defining the state vector of dimension 4

x(k)=[ Ak) o(k) Ap(k) A%p(k) |" @)

where |

A9(K) = 3 (D(k-+1) 6k~ 1) ®
and

K20(k) = 3 (AG(k+ 1)~ AG(k 1) ©)

and the observation equation is given by

2(K) = A(k)cos(9 (k) + (k) (10)
which can be rewritten as
2(k) = x1 (k) cos(xa(k)) + (k) (n

Now assuming that the amplitude of the signal follows a random
walk model
A(k)=A(k—1)+w(k) (12)

Hence, the state space model associated with the chirp signal z(k)
can written as a linear state equation and a non-linear observation
equation

x(k+ 1) = Fx(k) + Gw(k) .
z(k) = h(x(k)) 4 n(k)
where
1 0 0 O
1
F=0 & 1 3| adG=[1 00 0] @4
0 0 0 1
The nonlinear function H(x(k)) is
h(x(k)) = x1 (k) cos(x2(k)) (15)

In order to use the EKF, we linearize the observation function
around the current vector estimate

_ n(x(k)
=350 |oes

X

—[ cos(®a(k) —#(B)sin(&(0) 0 0 ]

(16)

3. ROBUST ESTIMATION BASED ON THE PARALLEL
EKF ALGORITHM

Based on [10], the author in [11] proposed a network of Kalman fil-
ters (NKF) in the case where the the observation noise is Gaussian
while the state noise is non Gaussian. In [12] the authors proposed a
NKEF to estimate a linear/non Gaussian state space model for chan-
nel equalization problem. A modified version of this algorithm is
proposed here, it is based on the computation of the a posteriori pdf
of the state

p(x(k)|Z* ) p(a(k)|x(K))

ky _
where ZF~1 = [z(k—1),2(k—2),...2(0)]
The likelihood of the observation p(z(k)|x(k)) is given by
p(z(k)|x(K)) = (1 - &)A (z(k) — H(k)x(k)), 07 )+
e (z(k) — H(k)x(k)), 03) (18)

The main idea is to approximate the densities p(x(k)|Z¥) and
p(x(k)|Z*~1) by a weighted sums of Gaussian density functions

p(x(k)|Z") = Z%k/V x(k) —

i=

£i(k), Pi(k)) (19)

and
/

Ck / 1 U
=Y o A (x(k) — £;(k), P; (k)

i=1

p(x(k)|z 1) (20)

The predicted pdf p(x(k + 1)|Z¥) for the next iteration is obtained
using

plx(k+1)|Z") = /P(X(k+ DIx (k) p(x(k)|Z)dx (k) @21)
Since the noise w(k) is assumed Gaussian, we have

p(x(k+1)[x(k)) =

Following the mathematical development in [11] (see Appendix),
[12], and [13], we propose the two parallel EKF algorithm for chirp
signal estimation.

N (x(k+1) = Fx(k),GG" 62) (22)

Table 1: summary of the PEKF algorithm

Given the initial conditions, compute for k:1, 2, 3 ...

Prediction step

X(klk—1) = Fxpyyse(k—1)

e(klk—1) = z(k) — h(%(k|k— 1))

P(klk—1) = FPyyse (k—1)FT +Go2GT

7 (klk—1) = o7 + H(k)P(klk— 1)H (k) j=1,2

Filtering step
Gj(k) = P(klk—1)HT (k) /&7 (k|k — 1)

Bj(klk) = (1 — (k)H(k))f’(klk— 1)
X/(klk)—X(k\k 1)+ Gj(k)e(klk—1)
MMSE state estimation
Bj(k) = A (e(klk—1),&7 (k|k— 1))

(1) — _ AiBi(k) 1 _
oj(k) = Y8, where Ay =1—¢,and A, = ¢
Sanase (k) = Xy o ()% (k[K)

Pumse (k) = X5 aj(k) [Pj(klk)+
(R (k|k) — Raamse (k) (R (k|k) — Raamse (k)T ]
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Figure 2: PEKF scheme

The algorithm given in Table 1 can be implemented as shown by
the scheme in figure 2. In order to estimate the parameters of the
signal givenby 0 =[ A(k) o B vy ]T one uses the following
relation [5]

6 (k) = AF % (k) (23)

where the matrix A is a diagonal with elements 1, 1, 1, 0.5.

4. SIMULATION RESULTS

In this section, we give some simulation results for the estimation
of the chirp signal in non Gaussian noise based on the dual EKF.
We consider a signal which is 1000 samples long and the sampling
period equals 1. The true values of the chirp parameters are as fol-
lows: ¢ =1.25%x10"3, B=0.1,and y= Z. The state noise w(k)
is zero mean Gaussian white noise with 62 = 1072,

The non Gaussian noise n(k) is distributed as in (6), with vari-
ance 612 = 0.25, and the ratio 022 / 612 = 500. The chirp parame-
ters convergence plots are given in simulation figures 4 to 7 which
are obtained for &€ = 0.01 with the following initial conditions
xo=[05 =m/3 0 3.107% ], and

P(0) =diag[ 1/2 #*/9 =%/9 4.3865.107° |

chirp signal
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Figure 3: Chirp signal

In order to assess the gain in performance, we compare the MSE
of the PEKF with the robust extended Kalman filter in [8] which
is based on a modified Kalman gain expression that in terms of the
modified Huber’s function. We observe in figures 8 to 11 that the
PEKEF is more robust and gives better estimates of the chirp param-
eters for low SNR.

5. CONCLUSION

‘We have presented a method for estimating the parameters of a chirp
signal described by non linear state space model where the observa-
tion noise in non Gaussian modelled by weighted-sum of two Gaus-
sians densities having different variances. The estimation is carried
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Figure 6: Estimation of the 3 parameter

out by using a parallel extended Kalman filtering algorithm with-
out resorting to threshold computation as compared to the robust
extended Kalman filter REKF. Simulation results showed that the
performance of the PEKF is better in terms of robustness and es-
timation accuracy compared to the REKF. On the other hand, this
algorithm allows the extension to multicomponent chirp signals and
higher order polynomial phase signal with constant as well as vari-
able amplitude signal which will be presented in future work.
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