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ABSTRACT

The problem of sequential multi-frame detection and tracking for
low-observable moving targets is herein considered. A Sequen-
tial Probability Ratio Test (SPRT) is employed for the detection
problem while target tracking relies upon a Maximum-A-Posteriori
(MAP) estimate. The computational costs of the proposed algo-
rithm is also considered and, supported by Dynamic Programming
(DP), an efficient implementation of the detection and tracking pro-
cedure is developed.

1. INTRODUCTION

In remote surveillance application, where the target signal ampli-
tude is weak relative to the background noise, the detection spec-
ifications cannot be met by processing single image frames. An
increase of the effective Signal-to-Noise Ratio (SNR) is possible, at
the cost of increased complexity, only if the backscattered energy
of the target is integrated along its trajectory which is unknown.
The detection and tracking problem in multi-frame observations has
been efficiently solved through track-before-detect techniques [1, 2]
where, after processing a fixed number of scans, the estimated track
is returned at the same time as detection is declared. This Fixed
Scan Number Test (FSNT), however, is usually inefficient whereby
we resort to the optimal sequential detector, i.e. the SPRT [3], which
is known to increase the sensitivity of power-limited radar systems
(such as, e.g., airborne radars) or, alternatively, to reduce the Av-
erage Scan Number (ASN). Moreover the thresholds can be eas-
ily calculated while the drawback of occasionally long tests can be
managed through abrupt truncation.

The present paper focuses on the problem of designing sequen-
tial detectors for moving target and extracting their tracks, as soon
as a positive decision has been made as to their presence. In other
words, the joint sequential-detection/tracking problem is split up
into two problems, on the understanding that the tracking function
may be activated or not. The approach we follow is, as far as de-
tection is concerned, to derive a SPRT restricting our concern to a
single target situation for mathematical tractability. Likewise, tar-
get tracking relies upon MAP estimation of the trajectory of the
detected target. The problem of the huge complexity that a brute-
force approach to the computation of the relevant statistics entails
(indeed, the number of possible trajectories is exponential in the
number of integrated frames, which is unacceptable in a real-time
scenario) is solved by resorting to DP techniques for the statistics
updates, which makes the overall complexity linear in the number
of integrated scans for both detection and tracking. A performance
assessment is also given, in order to demonstrate the merits of the
proposed strategy with respect to other competitors.

The paper is organized as follows: next section briefly outlines
the system models and derives the SPRT and tracking procedures
accordingly. Section 3 is devoted to the presentation of numerical
results, while concluding remarks are given in Section 4.

Notation: in the following vectors are indicated through bold-
face lowercase letters with (v)i denoting the i-th element of the
vector v; d·e and b·c denote the upper and lower integer part, respec-
tively, while <{·} is the real part;< f(t), g(t) >=

∫
R
f(t)g∗(t)dt,

where (·)∗ denotes conjugate, is the scalar product between func-
tions f(t) and g(t) and ‖f(t)‖ =

√
< f(t), f(t) > is the norm of

f(t); finally U(S) denotes the uniform distribution on the set S .

2. SEQUENTIAL DETECTION AND TRACKING

Consider a (mechanically or electronically) rotating radar system
with an overall azimuthal coverage of Φ rad, scanned in TR s.
Let Tp be the Pulse Repetition Time (PRT) and suppose the pulses
are processed in groups of N : this induces a partition in NΦ =
TR/(NTp) angular sectors, each Φs = Φ/NΦ rad wide. The joint
detection-tracking problem is split up into two distinct ones, the
former aimed at discriminating between the null hypothesis H0 that
no target is present in the coverage area and its alternativeH1 that a
single target is present, the latter aimed at estimating the track, once
H1 is accepted. The complex envelope of the return received from
the q-th azimuth at the k-th scan is thus written as

rq,k(t) =

{
sq,k(t) + wq,k(t) under H1

wq,k(t) under H0
,

with sq,k(t) the signal from the target and wq,k(t) the complex
white Gaussian thermal noise with power spectral density (PSD)
2N0: notice that no other interference source is accounted for. On
the other hand, the dependency of the target signal on the other sys-
tem parameters leads to the model:

sq,k(t) = Aq,ke
jθq,k

√
2NEpG(φk − (q − 1)Φs)ψq,k(t, τk, fk),

ψq,k(t, τk, fk) =
1√

2NEp

N−1∑

n=0

p(t− τk − nTp − (q − 1)NTp+

− (k − 1)NTR)e2πifkt,

where: q ∈ {1, . . . , NΦ} and k ∈ {1, . . . , K} are the azimuthal
and scan indices, respectively; Aq,ke

jθq,k ∈ C is the target re-
sponse; we suppose Aq,k ∼ Rayleigh(1) i.i.d. and θq,k ∼
U([0, 2π)) i.i.d.; G(φ) with G(0) = 1 denote the normalized beam
gain; φk ∈ (0,Φ) is the target azimuthal position; τk and fk are the
target delay and Doppler frequency at the k-th scan, respectively;
ψq,k(t, τk, fk) is the pulse train; p(t) is the baseband pulse with
energy 2Ep, τc being the (one-sided) duration of its autocorrelation
function.

Since thermal noise is independent in both q and k, condition-
ing upon

φk =(φ1 · · ·φk) , τ k = (τ1 · · · τk) , fk = (f1 · · · fk) ,

Ak =(A1,1 · · · ANΦ,1 A1,2 · · · ANΦ,k) ,

θk =(θ1,1 · · · θNΦ,1 θ1,2 · · · θNΦ,k) ,

the Likelihood Ratio (LR) corresponding to the observables
{rq,`(t) : q = 1, . . . , NΦ, ` = 1, . . . , k} factorizes to

Λk(φk, τ k, fk,Ak, θk) =

k∏

`=1

NΦ∏

q=1

e
<{<rq,`(t),sq,`(t)>}

N0
−

‖sq,`(t)‖
2

2N0 ,



which, averaged over Ak and θk, yields

Λk(φk, τ k, fk) =

=
k∏

`=1

NΦ∏

q=1

e
|<rq,`(t),ψq,`(t,τ`,f`)>|2

2N0

ρG2(φ`−(q−1)Φs)

1+ρG2(φ`−(q−1)Φs)

1 + ρG2(φ` − (q − 1)Φs)
, (1)

where ρ = NEp/N0 is the SNR per pulse train.
The functional in (1) defines a composite binary detection prob-

lem, wherein the parameters (φk, τ k, fk), containing the target lo-
cation in the azimuth-range-Doppler space up to epoch k, are un-
known. A viable means to cope with such a prior uncertainty is to
assign a prior distribution to these parameters: for target detection
the optimal strategy implies at this point to average out (φk, τ k, fk)
from (1). Once a target is detected, the same prior distribution is
used to form a MAP estimation of its track.

The parameters (φk, τ k, fk), which are inherently continu-
ous, can however be estimated up to an accuracy dictated by the
beamwidth of the transmit antenna and by the ambiguity function
of the transmitted signal. As a consequence, they can be discretized
with no impact on the system accuracy as:

φ` ∈{(m` − 1)Φs : m` ∈ {1, . . . , NΦ}} ,

τ` ∈{n`τc : n` ∈ {1, . . . , Nc}} , Nc = bTp/τcc ,

f` ∈{ν`/(NTp) : ν` ∈ {0, . . . , N − 1}} ,

for ` = 1, . . . , k. Defining now the state variable which describes
the target position at the `-th scan

s` =(φ`/Φs , τ`/τc , f`NTp) ∈ T ,

T ={1, . . . , NΦ} × {1, . . . , Nc} × {0, . . . , N − 1},

the target trajectory at the k-th scan is Sk = {s1, . . . , sk} ∈ T k,
i.e. the set of successive states up to scan k, and has probability
mass function (pmf) pSk (Xk) = P ({Sk = Xk}).

Then, assuming G(φ) = 0 ∀φ /∈ [−(M + 1/2)Φs, (M +
1/2)Φs], i.e. neglecting the signal contribution from angular sec-
tors further than M , in turn related to the antenna beamwidth, the
composite alternative in (1) is reduced to

Λk =
∑

Xk∈T k

pSk (Xk)
k∏

`=1

m`+M∏

q=m`−M
q∈{1,...,NΦ}

e
|r`(q,n`,ν`)|

2

2N0

ρG2(qΦs)

1+ρG2(qΦs)

1 + ρG2(qΦs)
,

(2)

where r`(q, n`, ν`) =< rq,`(t), ψq,` (t, n`τc, ν`/NTp) >, Xk =
{x1, . . . ,xk} and x` = (m`, n`, ν`) for ` = 1, . . . , k. In this case,
the (truncated) SPRT is

if k <K Λk






< γ0 choose H0

≥ γ1 choose H1

∈ [γ0, γ1) take another scan
, (3)

if k =K Λk

{
< γK choose H0

≥ γK choose H1
. (4)

Notice that, although [4] provides assurance that the test terminates
with probability one, we have chosen, in order to avoid occasionally
long tests, the practical compromise of a truncated SPRT. We do
not dwell any longer on the thresholds setting problem: we only
suppose K sufficiently large so as to guarantee infrequent abrupt
truncation in the test in which case γ0 and γ1 are still approximately
given by

γ0 =
1 − Pd

1 − Pfa
, γ1 =

Pd

Pfa
, (5)

where Pd is the probability of detection and Pfa the probability of
false alarm for the entire surveillance region.

The SPRT in (3) and (4) solves the detection problem. On the
other hand, once a target is detected, the track estimation problem
can be optimally managed resorting to a MAP estimate, i.e.

X̂k = arg max
Xk∈T k

pSk (Xk)
k∏

`=1

m`+M∏

q=m`−M
q∈{1,...,NΦ}

e
|r`(q,n`,ν`)|

2

2N0

ρG2(qΦs)

1+ρG2(qΦs)

1 + ρG2(qΦs)
.

(6)
From the above argumentation it is thus understood that imple-

menting the SPRT and extracting the target track requires:
a) devising a credible pmf for Sk;
b) avoid the exponential complexity (in the scan number k) en-

tailed by both (2) and (6).
To this end, let us first rewrite (2) and (6) using the simplified nota-
tion:

Λk =
∑

Xk∈T k

pSk(Xk)

k∏

`=1

Z`(x`), (7)

X̂k = arg max
Xk∈T k

pSk (Xk)
k∏

`=1

Z`(x`), (8)

with

Z`(x`) =

m`+M∏

q=m`−M
q∈{1,...,NΦ}

e
|r`(q,n`,ν`)|

2

2N0

ρG2(qΦs)

1+ρG2(qΦs)

1 + ρG2(qΦs)
, (9)

representing the azimuthal integration at each scan. It is worth
noticing that, should the noise PSD be unknown, the above statistics
may be made Constant-False-Alarm Rate (CFAR) by replacing the
statistics |r`(m,n, ν)|

2/(2N0) with

C`(m,n, ν) =
|r`(m,n, ν)|

2

1
2Q

Q∑
µ=−Q
µ6=0

|r`(m,n+ µ, ν)|2
. (10)

As regards task [a], the pmf of the target trajectory is strictly re-
lated to the target motion characteristics. Thus the prior distribution
pSk(Xk) has to be modelled based on the available target informa-
tion. Consider therefore the admissible azimuth, delay and Doppler
transition in a scan, ∆m, ∆±

n and ∆ν respectively, given by:

∆m =

⌈
vtTR

ΦsR

⌉
, ∆+

n =

⌈
v+

r TR

c∆/2

⌉
,

∆−
n =

⌈
v−r TR

c∆/2

⌉
, ∆ν =

⌈
arTR

λ/(2TR)

⌉
,

where R is the minimum target distance in the surveillance region,
vt the maximum tangential target velocity, v±r the maximum radial
velocity (the superscript ± stands for target approaching or moving
away, respectively) and ar the maximum radial acceleration. Fur-
thermore, let

B(x) = {v ∈ T : (v)1 ∈ {(x)1 − ∆m, . . . , (x)1 + ∆m},

(v)2 ∈{(x)2 − ∆+
n , . . . , (x)2 + ∆−

n },

(v)3 ∈{((x)3 − ∆ν)modN, . . . , ((x)3 + ∆ν)modN}}

be the set of all of the possible states admitting a direct path to
cell x in one step (see figure 1). In the following we will adopt a
conservative strategy and suppose that all of the admissible tracks
are equally likely (i.e. we assign the maximum uncertainty to the
target track), which corresponds to assuming

pSk(Xk) ∼ U(Mk),

Mk = {Xk ∈ T k : x`−1 ∈ B(x`), ` = 2, . . . , k}, (11)

where Mk denotes the set of the (physically) admissible tracks up
ot epoch k. It is easy to verify that card(Mk) =

∑
x∈T Nk(x)

with Nk : T → N such that
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Figure 1: two dimensional (azimuth-range) example showing the set B(x)
of the admissible afferent states to cell x at the current stage k.

Nk(x) =






1 if k = 1∑

v∈B(x)

Nk−1(v) if k ≥ 2 , ∀ x ∈ T .

Given the target dynamic (11), the statistic (7) at scan k have
to be computed with a complexity burden of kcard(Mk) multipli-
cations and card(Mk) summations. Since this results to be com-
putationally intractable, we will resort to DP, as in [2, 5], which
guarantees a complexity linear with the number of scans rather then
exponential. To illustrate further, notice that (7) can be rewritten as

Λk =
1

card(Mk)

∑

xk∈T

∑

xk−1∈B(xk)

· · ·
∑

x1∈B(x2)

k∏

`=1

Z`(x`) =

=
1

card(Mk)

∑

xk∈T

Zk(xk)
∑

xk−1∈B(xk)

Zk−1(xk−1) · · ·

· · ·
∑

x2∈B(x3)

Z2(x2)
∑

x1∈B(x2)

Z1(x1). (12)

Likewise, the maximization in (8) can be carried out exploiting the
following nested expression

max
Xk∈Mk

k∏

`=1

Z`(x`) = max
xk∈T

Zk(xk) max
xk−1∈B(xk)

Zk−1(xk−1) · · ·

· · · max
x2∈B(x3)

Z2(x2) max
x1∈B(x2)

Z1(x1).

(13)

Thus, noticing that Z`(x`) can be computed as soon as the `-
th scan is available, (12) and (13) can be recursively evaluated
through a DP Algorithm (DPA) which entails computing the func-
tions Pk, P

max
k : T → R

+ defined as follows:
- if k = 1

Pk(x) =Pmax
k (x) = Zk(x), ∀ x ∈ T ;

- if k ≥ 2

Pk(x) =Zk(x)
∑

v∈B(x)

Pk−1(v), ∀ x ∈ T ,

Pmax
k (x) =Zk(x) max

v∈B(x)
Pmax

k−1 (v), ∀ x ∈ T .

Now, given Pk and Pmax
k , the LR of (7) can be easily evaluated as

Λk =
1

card(Mk)

∑

x∈T

Pk(x), (14)

while, if a target is detected, the estimated trajectory (8) is X̂k =
{x̂1, . . . , x̂k}, obtained from the backtracing procedure

x̂` =






arg max
x∈T

Pmax
` (x) if ` = k

arg max
x∈B(x̂`+1)

Pmax
` (x) if ` = k − 1, . . . , 1

.

Parameters
pulse shape rectangular
carrier frequency 30 GHz
PRF 820 Hz
τc 0.5 µs
Nc (Nc) 100 (2439)
NΦ 1
N 16
K 20
Q 20
v±r Mach3, Mach2

Table 1: system parameters (PFA is the Pulse Repetition Frequency).

The computation of (14) involves now k
∑

x∈T N2(x) multiplica-
tions and kcard(T )

∑
x∈T N2(x) summations, i.e. the complexity

is only linear with the number of scans.

2.1 Remarks

• In remote surveillance application, the proposed tracking algo-
rithm can be restricted only to the furthestN c < Nc range bins,
where small azimuth transitions ∆m are allowed, while a single
scan detection can be sufficient for the closer regions. In gen-
eral, however, parallel disjoint trackings can be employed, each
with its different parameters.

• In the problem statement, we have not considered the possibil-
ity that the target could change its position during the Time-On-
Target (TOT), i.e. during the 2M + 1 trains while it is illumi-
nated. While this hypothesis results quite always verified for
the azimuth resolution cells (at least for long distances where it
can be productive a multi-scan integration) it may not be valid
for the range and/or Doppler bins. However, the latter situation
can be easily managed averaging out the inter-scan delay and
Doppler frequencies, of poor interest with respect to the state
changes between successive scans. The resulting LR would thus
adopt, instead of (9), the following statistics:

Z`(x`) =
1

card(G(n`, ν`))
·

·
∑

(n,ν)∈G(n` ,ν`)

m`+M∏

q=m`−M
q∈{1,...,NΦ}

e
|r`(q,n,ν)|

2

2N0

ρG2(qΦs)

1+ρG2(qΦs)

1 + ρG2(qΦs)
,

where the set G(n`, ν`) bears all of the possible target transition
during the TOT (usually card(G(n`, ν`)) is not large). Other-
wise, the statistics in (9) can be still adopted, this representing a
good trade-off between system performance and complexity at
price of some energy loss.

• Equations (7) and (8) are quite general and can account for
many situations. Indeed, given the particular multi-frame de-
tection/tracking problem and the set of observables at epoch k
(possibly pre-processed in order to lower the overall complex-
ity) an LR can be formed, finally obtaining equation (7) where
the state variable Sk take into account the appropriate set of tar-
get parameters (range-Doppler, range-azimuth, range-azimuth-
elevation,...). From this point on, the proposed DPA can be ef-
fectively resorted.

3. NUMERICAL RESULTS

The detection and tracking performances of the proposed algorithm
have been studied considering the system parameters in table 1. We
have considered a sequential search radar at a fixed beam position,
i.e. NΦ = 1, where the Doppler parameter has been eliminated be-
fore scan-to-scan integration by performing maximization over the
Doppler shifts for each received pulse train. This choice can re-
sult convenient even in other not so simplified frameworks in order
to limit the system complexity; moreover, the lost target velocity



information can be effectively recovered from the estimated trajec-
tory. For this scenario, the pre-processed observables, on the basis
of which forming the LR, are

r`(n`) = max
ν`∈{0,...,N−1}

< rq,`(t), ψq,` (t, n`τc, ν`/NTp) >,

with q = 1, and the corresponding statistics in (9) become

Z`(x`) =
N − 1

N

1 − e−C`(n`)/(1+ρ)

1 − e−C`(n`)
+

1

N

eC`(n`)ρ/(1+ρ)

1 + ρ
.

where x` = n` and C`(n`) are the CFAR statistics in (10) after
maximization over the Doppler shifts.

The behavior of the algorithm has been tested through Mon-
teCarlo simulations and the couple (τ k, fk) has been generated to
take values on a continuous set. According to (5), the thresholds γ0

and γ1 have been set in order to have Pd = 0.9 and Pfa = 10−3 for
ρ = 0 dB while γK = γ0/3 + 2γ1/3. In figure 2 the probabilities
Pd and Pfa are drawn versus ρ, showing good agreement with the
corresponding values chosen at the design stage. In the same figure
are also depicted the probability of detection and correct position
estimation Pd,pos (i.e. the probability that a track is detected under
hypothesis H1 and that the final target position is within en resolu-
tion cells of the actual target cell) and the probability of detection
and tracking Pd,track (i.e. the probability of target detection un-
der hypothesis H1 and the recovered trajectory being at each stage
within en resolution cells of the actual target trajectory). In table
2, on the other hand, the ASN and the dispersion δ (i.e. the ratio
between the standard deviation of the scan number and the ASN)
under the two alternatives is listed for different SNRs.

For comparison pourpose, we also report the performance of the

optimal (in the Neyman-Pearson sense) FSNT, ΛK
H1
≷
H0

γ, with K =

7, i.e. always more scans than the SPRT. The threshold has been set
using figure 3, where Pfa is reported as a function of γ for different
scan number. In figure 4, therefore, Pd and Pd,pos are plotted for
the proposed SPRT and the FSNT one, both with the same Pfa of
2.28 · 10−3 (for clarity, the vertical axis uses a Gaussian scale).
Notice that the Pds are almost coincident, the SPRT employing a
lower ASN: in particular, for the SNR of project ρ = 0 dB, we have
56% of scan number saving.

4. CONCLUSIONS

We have considered the general problem of detection and target
tracking in multi-frame radar applications. An SPRT for multi-
ple scans has been proposed for target detection while the tracking
problem has been managed appending a MAP track estimate. After
devising a credible distribution for the target track, a DPA algorithm
has been developed which makes the overall complexity linear in
the number of integrated scans for both detection and tracking.
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δH1

0.45 0.53 0.61 0.67 0.71 0.70 0.66
· · ·

· · ·

4 6 8
1.7 1.4 1.3

0.60 0.52 0.44
, ASNH0

5.3
δH0

0.41
.

Table 2: average scan number and dispersion under both H0 and H1.
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