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ABSTRACT

Particle filtering – perhaps more properly named Sequential Monte
Carlo – approaches have a strong potential for signal and image
processing applications. A problem of great practical significance
in this field, which remains largely unsolved as of today, is the esti-
mation of fixed model parameters based on the output of sequential
simulations.

In this contribution, we investigate maximum likelihood esti-
mation approaches based either on gradient or EM (Expectation-
Maximization) techniques and show that several recently proposed
methods share the common feature of requiring the approximation
of the expectation of a sum functional of the hidden states, condi-
tionally on all the available observations. Considering this general
task, we discuss empirical results concerning the influence of the
number of particles and sample size. We also propose a robustifi-
cation of the basic particle estimator which is based on forgetting
ideas.

1. INTRODUCTION

In recent years, sequential Monte Carlo methods have been put in
use, sometimes very successfully, in applications as diverse as target
tracking, mobile localization, positioning, computer vision and dig-
ital communications [8, 13]. It is well-known however that calibra-
tion of model parameters based on the output of particle filtering is a
difficult issue. Note that although we focus here on likelihood-based
methods the same observation holds true in the Bayesian frame-
work.

Although the likelihood of the observations may readily be ap-
proximated from the simulated system of particles [12, 11], the use
of the obtained approximation for parameter estimation is not triv-
ial. In particular, being able to approximate the value of a function
is arguably not sufficient for finding efficiently its maximum, partic-
ularly in large dimensional models. In addition, the obtained like-
lihood approximation is non-smooth due to the Monte Carlo error
that affects the likelihood approximations computed for each value
of the parameters. Note that it is still the case, even when cleverly
fixing the random seeds used for simulating the system of particles
as proposed by [12], due to the fundamentally non-smooth nature
of the resampling operator.

We consider below the approximation of quantities which are
instrumental in effective maximization of the likelihood either when
using EM-based or gradient-based methods. Our main concern will
be to approximate reliably such quantities using particle filtering
methods. Note that we don’t consider specifically the task of recur-
sive or on-line estimation although the approaches discussed here
could obviously be adapted for this purpose.

2. THE MODEL

We focus on particle filtering techniques in the context of hidden
Markov models although the techniques discussed here also apply
for more general models such as Markov switching autoregressive
models [2]. A hidden Markov model is such that
1. {Xk}k≥0 is Markovian with initial distribution q0 and transition

density function q such that, for any function f , E[ f (X0)] =

∫
f (x)q0(x)dx and

E[ f (Xn)|X0:n−1] =
∫

f (x)q(Xn−1,x)dx

where X0:n−1 denotes the collection of variables X0, . . . ,Xn−1.
2. {Yk}k≥0 is conditionally independent given {Xk}k≥0 with

(marginal) transition density function g such that, for arbitrary
functions f0, . . . , fn,

E

[
n

Õ
k=0

fk(Yk)

∣∣∣∣∣X0:n

]
=

n

Õ
k=0

∫
fk(y)g(Xk,y)dy

where g is sometimes referred to as the (conditional) likelihood
function. In the following, we always consider g as a function
of its first argument only and write gk(x) = g(x,Yk) for the con-
ditional likelihood function evaluated in Yk.

Using Bayes’ rule it is easily verified that – see e.g.[9] – the joint
smoothing density, which is the main quantity of interest in particle
filtering, is given by

φ0:n|n(x0:n) = L−1
n q0(x0)g0(x0)

n

Õ
k=1

q(xk−1,xk)gk(xk) (1)

where the normalization factor Ln is the likelihood of the observa-
tions Y0:n. From (1) we may derive the recursive formulation

φ0:n|n(x0:n) = c−1
n φ0:n−1|n−1(x0:n−1)q(xn−1,xn)gn(xn) (2)

where cn = Ln/Ln−1. Marginalizing (2), taking the log and sum-
ming the obtained expression for all indices between 0 and n yields
the well-known expression of the likelihood

`n
def= logLn =

n

å
k=0

logck = log
∫

q0(x)g0(x)

+
n

å
k=1

log
∫∫

φk−1(x)q(x,x′)gk(x′)dxdx′ (3)

where φk is the filtering density (marginal of φ0:k|k in xk).
Particle filtering, in its most basic form (also known as sequen-

tial importance sampling with resampling), consists in approximat-
ing these exact smoothing relations by propagating particle trajec-
tories in the state space of the hidden chain according to

• At time 0, draw N particles {ξ i
0}1≤i≤N from a common prob-

ability density ρ0 and compute the importance weight ω i
0 =

q0(ξ i
0)g0(ξ i

0)/ρ0(ξ i
0).

• For successive time indices, simulate ξ i
k+1 from a transition

density function r(ξ i
k, ·) and update the weight according to

ω i
k+1 = ω i

kq(ξ i
k,ξ

i
k+1)gk+1(ξ i

k+1)/r(ξ i
k,ξ

i
k+1) and the trajectory

by ξ i
0:k+1 = (ξ i

0:k,ξ
i
k+1).



• From time to time resample by first normalizing the weights
{ω i

k}1≤i≤N by their sum so that å N
i=1 ω i

k = 1 and then drawing
indices I1

k , . . . , IN
k in {1, . . . ,N} such that

E(#{1 ≤ j ≤ N : I j
k = i0}) = Nω

i0
k

the weights are all reset to a common value and the trajectory is
updated according to

ξ
j

0:k = ξ
I j
k

0:k

Note that due to resampling, the notation ξ i
k becomes somewhat

ambiguous and we will use the notation ξ i
0:k(l) to denote the

point of index l in the ith particle trajectory at index k (with
k ≥ l). By convention, ξ i

0:k(k) is denoted simply by ξ i
k.

At any index k, the self-normalized estimate

N

å
i=1

ω i
k

å N
j=1 ω

j
k

f (ξ i
0:k) (4)

is an approximation of E [ f (X0:k) |Y0:k] (where f is an arbitrary in-
tegrable function of the k + 1 first state variables). Compared to
other more ad-hoc alternatives, particle filtering can be shown to be
convergent (in a suitable probabilistic sense) as the number N of
particles increases [8, 5, 6, 2].

3. APPROACHES FOR MAXIMUM LIKELIHOOD
ESTIMATION

We now assume that the model characteristics q, g and q0 depend
on a parameter vector θ . We will use θ as a superscript to indicate
which quantities depend on the parameter. Since we consider iter-
ative maximization algorithms there are always two values of the
parameters which play a role at any given iteration: the current one
and its update. To avoid notational blow up we omit the iteration
index and make dependence with respect to the current value of the
parameter implicit, for instance, q refers to current estimate of the
hidden chain’s transition density, while qθ refers to the same quan-
tity for a different value of the parameter.

For doing maximum likelihood estimation, one needs to esti-
mate quantities of the form

τn = E

[
n−1

å
k=0

sk(Xk,Xk+1)

∣∣∣∣∣Y0:n

]
(5)

where s0 to sn are, possibly vector-valued, functions. This is obvi-
ous in the context of the EM algorithm [7] since the joint density of
the states and observations log pθ (x0:k,y0:k) has precisely the form
given in (5) with sk(xk,xk+1) = logqθ (xk,xk+1)+ loggθ

k (xk +1) for
k ≥ 1 and s0(x0) = loggθ

0 (x0) (assuming that q0 does not depend on
the parameter θ ).

It is also true with gradient based method since Fisher’s iden-
tity [7] states that the gradient of the log-likelihood `n defined in (3),
evaluated at the current value of the parameter, is obtained when
sk(xk,xk+1) = Ñ logq(xk,xk+1) + Ñ loggk(xk + 1) (for k ≥ 1) and
s0(x0) = Ñ logg0(x0), where Ñ denotes the gradient taken at the
current value of the parameter. The approach followed in [4, 10]
to derive the gradient approximation is slightly different since it is
based on the so-called sensitivity equations obtained by differenti-
ating the filtering recursion with respect to the parameter. It can
however be shown that the obtained recursion corresponds to a re-
cursive rewriting of Fisher’s formula and hence is equivalent to the
formula given here [2]. Note also that (5) is obviously very different
from the expression of the log-likelihood in (3): equation (5) does
implies the joint smoothing distribution while (3) may be written as
a telescoping sum of terms, each of which only involves the filtering
distribution.

Quite naturally the approximation of (5) based on (4) then con-
sists in propagating a system of particle trajectories and associated
weights under the current value of the parameter, which we denote
by {ξ i

0:n,ω
i
n}1≤i≤N , and using the estimator

τ̂
N
n =

N

å
i=1

ω i
n

å N
j=1 ω

j
n

n−1

å
k=0

sk

(
ξ

i
0:n(k),ξ

i
0:n(k +1)

)
(6)

It is straightforward to verify that storing the whole particle tra-
jectories is indeed not required to evaluate (6): upon defining
γ i

k = å k−1
l=0 sl

(
ξ i

0:k(l),ξ
i
0:k(l +1)

)
(for k ≥ 1), we have

γ
i
k+1 =

{
γ i

k + sk(ξ i
k,ξ

i
k+1) in the abscence of resampling

γ
Ii
k+1

k + sk(ξ
Ii
k+1

k ,ξ
Ii
k+1

k+1) when resampling occurs
(7)

where τ̂N
n is obtained as å N

i=1 ω i
nγ i

n. Hence we only need to store for
each particle, its current position ξ i

k, weight ω i
k and partial cumu-

lated sum γ i
k. The method thus necessitates only minor adaptations

once the particle filter has already been implemented. Note that this
algorithm may also be obtained directly as a particle approximation
of an equivalent recursive (in n) formulation of (5) [1].

4. APPROXIMATION OF SMOOTHED SUM
FUNCTIONALS

The main question to be answered is to determine how good is the
approximation of (5) given in (6) for different values of N and n?
Although we cannot actually provide a full theoretical analysis of
this issue, we give a number of hints in that direction, based on our
experience of this approach in several examples, one of which will
be discussed below.
1. Although the variance of τ̂N

n grows as n increases (while keeping
the number N of particles fixed) it does not blow up, as some-
times conjectured; note that normalization issues are important
here since τn obviously is a quantity that increases with n.

2. As expected, the approximation improves with larger values of
N (the number of particles) but, when N is sufficiently large, it
is possible to modify slightly τ̂N

n so as to reduce significantly its
variance (at the price of introducing a, usually, negligible bias).
The first point in particular is somewhat surprising because τn

as defined in (5) depends on the complete trajectory between indices
0 and n and it seems that the approximation τ̂N

n , with a fixed value
of N, could get arbitrarily bad as n increases. Typically, this is not
the case and the rate of increase of the approximation error with n
is very moderate. This is particularly true when τn is properly nor-
malized: τn is a persistent sum (i.e. consisting of a number of terms
which increase as n grows) whose value is always used normalized
by the number of processed observations (see example in Section 5
below). Under this normalization, the increase of the approximation
error with n is not very significant (see Figure 2).
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Figure 1: Typical particles trajectories for N = 50 (see Section 5 for
details of model and algorithm).

We now discuss some elements that justify the construction
which makes it possible to reduce the variability of the particle ap-
proximation. To simplify the discussion, we consider in the sequel



that resampling is used systematically (at each time index) so that
ω i

k = 1/N for all k and i: in particular, the weights in (6) are all
equal to 1/N and γ i

k is systematically updated according to the sec-
ond option in (7).

It is important to understand that as n increase, there is indeed
a part of the sum in (6) that doesn’t get updated anymore due to
the successive resamplings: there exists (with high probability) a
finite random delay D k (which may vary with k) defined as the
smalled integer for which ξ i

0:k(k− D k +1) = ξ
j

0:k(k− D k +1) for all
i, j ∈ {1, . . . ,N}, i.e. all active trajectories at index k have a common
ancestor back in the past at index k− D k +1 (see Figure 1 for an il-
lustration). It is not hard to see that for any n≥ k and l ≤ k− D k +1,
ξ i

0:n(l) = ξ
j

0:k(l). Thus the contribution of index l (for l ≤ k− D k)
is fixed to sl

(
ξ i

0:k(l),ξ
i
0:k(l +1)

)
for all later indices n ≥ k (as well

as for any i, since all trajectories have collapsed into a single one at
this stage).

Because the collapsing times D k are random it is very hard
to tell anything about the distribution of ξ

j
0:k(k − D k + 1). On

the other hand, if D k was deterministic and equal to δ , then
sk−δ

(
ξ i

0:k(k−δ ),ξ i
0:k(k−δ +1)

)
would be and estimator of

E [ sk−δ (Xk−δ ,Xk−δ+1) |Y0:k]

that is the expectation of sk−δ under the δ -lag smoothing distribu-
tion. This remark naturally suggests the following question: is the
δ -lag smoothing distribution P(Xk−δ ∈ ·,Xk−δ+1 ∈ ·|Y0:k) close to
P(Xk−δ ∈ ·,Xk−δ+1 ∈ ·|Y0:n) for n≥ k? This question is connected
to a more general concern known as forgetting properties of the
smoothing and filtering distributions. Very schematically the an-
swer to this question is known (empirically) to be yes in many situ-
ations but is fairly hard to establishes on solid theoretical grounds.
In all models for which the stability (in n) of the particle filter has
currently been proved however, the answer can be shown to be “yes,
at a rate which is exponential in the lag δ” [5, 6, 2].

These arguments suggest that waiting for all the trajectories to
collapse – as (7) implies – is not a very efficient simulation princi-
ple. Hence when N is sufficient so that forgetting occurs for values
of δ which may be far smaller than typical values of D n it is more
appropriate to impose the lag δ after which resampling of the past
trajectories is inhibited. To do this, we modify the definition of τn
in (5) into

τ
δ
n = E

[
n−1

å
k=0

sk (Xk,Xk+1)

∣∣∣∣∣Y0:(k+δ )∧n

]
(8)

which may be approximated by

τ̂
δ ,N
n =

1
N

N

å
i=1

n

å
k=0

sk

(
ξ

i
0:(k+δ )∧n(k),ξ

i
0:(k+δ )∧n(k +1)

)
(9)

Although a little bit more involved than in the case of (6), (9) may
be updated recursively by maintaining a cache of the recent history
of the particles {ξ i

0:n(n−δ +1 : n)}1≤i≤n as well as the cumulated
contribution of terms that will not get updated anymore

N

å
i=1

{
sn−δ

(
ξ

Ii
n

0:n−1(n−δ ),ξ Ii
n

0:n−1(n+1−δ )
)

+

n−δ−1

å
k=0

sk

(
ξ

i
0:k+δ

(k),ξ i
0:k+δ

(k +1)
)}

Apart from increased storage requirements, computing the reduced-
lag approximation τ̂

δ ,N
n is clearly not computationally more de-

manding than computing τδ
n .

5. SOME RESULTS

For illustration purposes we consider a one dimensional model for
which exact computation is also available, namely a noisily ob-
served Gaussian AR(1) model such that qθ (x,x′) = N(x′ ;φx,σ2),
gθ (x,y) = N(y ;x,ρ2), where N(· ; µ,υ) denotes the Gaussian pdf
(probability density function) with mean µ and variance υ . The
initial pdf q0 is an improper constant (also called diffuse) prior;
meaning in particular that the initial filtering pdf φ0(x) is given by
N(x ;Y0,ρ

2). Throughout this section we use a simulated dataset of
length n = 500 with parameters φ = 0.98, σ = 0.2, ρ = 1.

It is straightforward to check that the EM algorithm applied to
this model requires the approximation of

τn,1 = E

[
n−1

å
k=0

X2
k

∣∣∣∣∣Y0:n

]

τn,2 = E

[
n−1

å
k=0

XkXk+1

∣∣∣∣∣Y0:n

]

τn,3 = E

[
n

å
k=1

X2
k

∣∣∣∣∣Y0:n

]

τn,4 = E

[
n

å
k=0

(Yk −Xk)2

∣∣∣∣∣Y0:n

]
and updates the parameters according to

φ = τn,2/τn,1 (10)

σ
2 = (τn,3 −φτn,2)/n (11)

ρ
2 = τn,4/(n+1) (12)

As mentioned before, the above update equations depend on the
expected sums τn,1, . . . ,τn,4 normalized by terms of order n (or by
another τn, j which is equivalent) rather than on the expected sums
themselves.
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Figure 2: Box-and-whiskers plots of the approximate parameter up-
dates for two different observations lengths compared with exact
update (solid horizontal line); J1: N = 10, J2: 100, J3: 1000 parti-
cles (plot based on 5000 independent replications of the particles).

Figure 2 displays the parameter updates (10)–(12) based on se-
quential Monte Carlo approximations of τn,1 to τn,4 (here we used
the simple bootstrap filter with systematic resampling) using the ba-
sic approach described in (7) and compared to the exact EM up-
dates. The values φ = 0.8, σ = 0.5 and ρ = 2 are used as current



estimates of the parameter (which are thus rather far from the ac-
tual maximum likelihood estimate, both when n = 50 and n = 500).
Note that when the number of particles is really too small (N = 10)
we observe a bias for some parameters which is coherent with the
previous discussion (knowing that when N = 10 the average values
of D n is indeed not much larger than 10).
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Figure 3: Same display as in Figure 2 for n = 500; comparison of
“joint” approximation τ̂N

n with J2: N = 100 and J3: 1000 particles

with “fixed-lag” approximation τ̂
δ ,N
n with F2: N = 100 and F3:

1000 particles and lag δ = 20.

In Figure 3, we report only the case n = 500 and compare
the basic approximation strategy with the one based on fixed-lag
smoothing with δ = 20, which is a reasonable value of the lag
for which forgetting is already quite strong in this example. It is
obvious that fixed-lag smoothing drastically reduce the variance
without significantly raising the bias: boxes labelled “F2” (fixed-
lag smoothing) are roughly equivalent to those labelled “J3” (joint
smoothing) which are obtained with 10 times more particles.

In any case, the approximations obtained using sequential
Monte Carlo appear sufficiently reliable (even for large values of
n) to be used in simulation-based maximum-likelihood algorithms
such as Monte Carlo EM. To give an idea of the type of results
that one may obtain we show in Figure 4 the first fifty iterations of
the SEM (Stochastic EM) algorithm of [3] compared to the exact
EM trajectory. Here the SEM algorithm simply consists in using
(10)–(12) with the particle approximations substituted for the exact
expectations. Although SEM is not an algorithm that converges to
the maximum of the likelihood in general, it is clear that it does
reasonably well in this case, even with a very moderate number of
particles (N = 25) – see also [2] for other examples.

We currently believe that a complete theoretical study of the be-
havior of estimates based on the fixed-lag approximation is possible
using available results on the convergence of the particle filter and
stochastic versions of the EM algorithm.
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[1] O. Cappé. Recursive computation of smoothed functionals of
hidden Markovian processes using a particle approximation.
Monte Carlo Methods Appl., 7(1-2):81–92, 2001.

0 5 10 15 20 25 30 35 40 45 50

1

1.5

2

r

iterations

0 5 10 15 20 25 30 35 40 45 50

0.2

0.3

0.4

0.5

s

0 5 10 15 20 25 30 35 40 45 50
0.8

0.85

0.9

0.95

1

f
Figure 4: Four independent trajectories of the SEM algorithm with
N = 25 particles superimposed on the exact EM trajectory (bold
line). Same data as in previous figures, with n = 500.
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