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ABSTRACT

We present an adaptive echo cancellation algorithm for
sparse echo path impulse responses. This new approach ex-
ploits both the robustness of the improved proportionate nor-
malized least-mean-square (IPNLMS) algorithm and the effi-
cient implementation of the multi-delay (MDF) adaptive fil-
tering algorithm inheriting the beneficial properties of both.
Evaluation results are presented and the computational com-
plexity is also discussed. Both speech and white Gaussian
noise simulation results show that the [IPMDF algorithm out-
performs the MDF and IPNLMS algorithms for both sparse
and dispersive echo path impulse responses.

1. INTRODUCTION

With the advent of IP voice telephony, research on network
echo cancellation is increasingly important. In such systems
where traditional telephony equipment is connected to the
packet switched network, the echo path impulse response,
which is typically of length 64-128 ms, exhibits an ‘ac-
tive’ region in the range of 8-12 ms duration. As a result,
the impulse response is dominated by regions where magni-
tudes are close to zero making the impulse response sparse.
The ‘inactive’ region is due to the presence of bulk delay
caused by network propagation, encoding and jitter buffer
delays [1].

Classical adaptive algorithms such as the normal-
ized least-mean-square (NLMS) algorithm have slow con-
vergence in sparse network echo cancellation applica-
tions. The proportionate normalized least-mean-square algo-
rithm (PNLMS) [2] was proposed which exploits the sparse-
ness of the network impulse response such that each filter
coefficient is updated independently of the others by a vari-
able step-size proportional to the estimated filter coefficient.
Subsequent improved versions such as the IPNLMS [3] and
IIPNLMS [4] were proposed which achieve improved con-
vergence by introducing a controlled mixture of proportion-
ate (PNLMS) and non-proportionate (NLMS) adaptation.
Consequently, these algorithms perform better than PNLMS
for sparse, and in some cases for dispersive, impulse re-
sponses.

In recent years, frequency-domain adaptive algorithms
have become popular due to their efficient implementa-
tion. These algorithms incorporate block updating strategies
whereby the fast-Fourier transform (FFT) algorithm is used
together with the overlap-save method [5]. One of the main
drawbacks of these approaches is the delay introduced be-

tween the input and output which is equivalent to the length
of the adaptive filter. Consequently, for long impulse re-
sponses, this delay can be considerable since the number
of filter coefficients can be several thousands. To mitigate
this problem, the authors in [6] proposed the multi-delay fil-
ter (MDF) which uses a block length N independent of the
filter length L. Although it has been well-known, from the
computational complexity point of view, that N = L is the
optimal choice, the MDF algorithm nevertheless is more ef-
ficient than time-domain implementation even for N < L.

In this paper, we propose the improved proportionate
multi-delay filtering (IPMDF) algorithm for sparse impulse
responses which exploits both the improvement in con-
vergence brought about by the proportionality control of
the IPNLMS algorithm and efficient implementation using
the MDF structure. This paper is organized as follows: Sec-
tion 2 reviews briefly the PNLMS, IPNLMS and MDF algo-
rithms. We derive the proposed IPMDF algorithm in Sec-
tion 3 while Section 4 presents the computational complex-
ity. Section 5 shows simulation results and Section 6 con-
cludes our work.
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Figure 1: Schematic diagram of an echo canceller.

2. REVIEW OF IPNLMS AND MDF ALGORITHMS

With reference to Fig. 1, we first define filter coefficients
and tap-input vectors as h(n) = [ho(n) hy(n)...h_1(n)]"
and x(n) = [xo(n) x1(n)...x,—1(n)]" where L is the adap-
tive filter length. The adaptive filter will model the unknown
impulse response h(n) using signal y(n) = x” (n)h +v(n) +
w(n) where v(n) and w(n) are defined as the near-end speech
signal and ambient noise respectively. For simplicity, we
shall temporary ignore the effects of double talk and ambi-
ent noise, v(n) = w(n) = 0, in the description of algorithms.



2.1 PNLMS and IPNLMS algorithms

The PNLMS and IPNLMS have been proposed for echo can-
cellation of sparse systems. These algorithms are described
by the following set of equations:

e(n) = y(n)—h" (n—1)x(n) M
Q(n—1) = diag{go(n—1) q1(n—1)...q_1(n—1)}  (3)

where is the adaptive step-size and is the regularization
parameter. The diagonal control matrix Q(n) determines the
step-size of each filter coefficient and is dependent on the
specific algorithm as described below.

2.1.1 PNLMS
The elements of the control matrix Q(n) for PNLMS are [2]
(n)
Qi) = ——1——
o iln)
1(n) = max{ xmax{_,|ho(n)]...[A_1(m)[},[u(n)[}. (5)

, 0<I<L-1 “)

The parameter , with a typical value of 0.01, prevents & (n)

from stalling during initialization stage where h(0) = 0y
while  prevents coefficients from stalling when they are
much smaller than the largest coefficient. The regulariza-
tion parameter in (2) for PNLMS should be taken as

PNLMS = NLMS/L [3] where NLMS = XZ is the variance
of the input signal. It can be seen that for > 1, PNLMS is
equivalent to NLMS.

2.1.2 IPNLMS

An enhancement of PNLMS is the IPNLMS algorithm [3]
which is a combination of PNLMS and NLMS with the rel-
ative significance of each controlled by a factor . The ele-
ments of the control matrix Q(r) for IPNLMS are given by
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where is a small value and ||.||; is the /;-norm operator.
The regularization parameter in (2) for IPNLMS should
be taken as [pNLMs = 12;L NeMms [3]. It can be seen that
IPNLMS is equivalent to NLMS when = —1 while for
close to 1, IPNLMS behaves like PNLMS.

2.2 The MDF algorithm

We now summarize the MDF algorithm [6] by first assuming
L = KN where N is the frame-size and K € Z™. Letting m be
the frame index, we have the following quantities:

X(m) = [x(mN)...x(mN+N-1)] (7)
y(m) = [p(mN)..y(mN+N—-1]" ®)
y (m) = [P(mN)..5(mN+N-1)]"

= X'(m)h )
e(m) = y(m)-y~(m)

= le(mN)...e(mN+N—1)]7. (10)

We note that X (m) is a Toeplitz matrix of dimension L X N.
Defining k as the block-index and T(m — k) as an N x N

Toeplitz matrix such that

x(mN —kN) x(mN—kN—-N+1)
Tm_ky— | Nk :
x(mek].VJer 1) x(mN.ka)
(an
it can be shown using (9) and (11) that
K—1 R
y(m)=  T(m—k)h(m) (12)
k=0
where
by (m) = [y (m) iyt (m) . gy -1 (m)]T, k=0,1...K—1

13)
is the k™ sub-filter of h(m).
It can be shown that the Toeplitz matrix T (m — k) can be
transformed, by doubling its size, to a circulant matrix

Clm-H=| pom =) T (14)
with
x(mN — kN +N) x(mN—kN+1)
(k)= | XN RN =N+1) : . )
x(mN v 1) x(mN i +N)

The resultant circulant matrix C can then be decomposed

as C = F!DF where F is a 2N x 2N Fourier matrix
and D is a diagonal matrix whose elements are the discrete
Fourier transform of the first column of C. Note that the
diagonal of T’ is arbitrary, but it is normally equal to the
first sample of the previous block £ — 1 [7]. We now de-

fine the frequency domain quantities: y(m) = F { g’iz’;ls }

N _ by (m) _ Onx1 o1 _ 0lp—1

m(m)fF{ Ol ,e(m)=F e(m) ,GV =W YF

wol — | Ovxv Onxw GO = W 10F-1 and W10 =
Onxn  Inxn

Ovan  ONun The MDF adaptive algorithm is then

given by the following equations:

{ Iyxv  Onxn

K—1
e(m)=y(m)—G"  D(m—kh(m-1)  (16)
k=0
Smpr(m) = Smpr(m—1)+(1— )D*(m)D(m)  (17)

hy(m) =hy(m—1)+ GD*(m—k)x
[Smpr(m) + mpE]~'e(m) (18)

where * denotes complex conjugate, 0 < < 1 is the for-
getting factor and = (1 — ) is the adaptive step-size
with 0 < < 1. Letting 2 be the input signal variance,
the initial regularization parameters are Sypr(0) = 2/100
and ypr =20 2N/L([7].

3. IPMDF ALGORITHM

We now propose the IPMDF algorithm which incorporates
proportional updates as in IPNLMS whilst achieving efficient
implementation by exploiting the MDF algorithm described
in Section 2.2.



We note that direct use of Q(n), with elements as de-
scribed by (6), into the weight update equation in (18) is inap-
propriate since the former is in the time-domain whereas the
latter is in the frequency-domain. Thus our proposed method
will be to update the filter coefficients in the time-domain.
This is achieved by first defining the matrix

G =wlp-1, (19)

We next define
ar(m) = [qiv(m) qivy1(m) ... qeven—1(m)}, k=0, 17-~-7K(71)
20

as the partitioned control elements of the £ block such that
each element in this block is now determined by

1- iy (m)|
i = —+(1 T a—— 21
qkn+j(m) 2L ( 2B+ 2y
where £k = 0, 1,...,K — 1 is the block-index while

j= 0, 1,...,N—1 is the tap-index of each k™ block. The
IPMDF filter update equation is then given by

hy(m) = Iy(m—1)+L Qi(m)G''D*(m—k)
X [Stpmpr(m) + 1pmpE] e (m) (22)

where the diagonal control matrix Qg(m) = diag{qi(m)}.
The IPMDF algorithm can be summarized as follows:

IPMDF Algorithm

(1- ) 220N
IPMDF 2L

= (1- 4

(1- ) 0< <1

(-2

Sipmpr(0) = “5xqo5-
h(0) = 07
hy(m) = [ (m) hyys1 (m) . hyysn—1 (m)) "
— i’ /- ilm .
qu+i(m) :12T+(]+ )‘Zl\(\%JrH]er)" Jj=01,...,N-1

qi(m) = lgv(m) quve1(m)...qv—ny1(m)]
Qi(m) = diag{qx(m)}

e(m) =y(m) =G £ D(m—k)h(m—1)
Siempr(m) = Sipmpr(m — 1)+ (1 — )D*(m)D(m)
he(m)  =him—1)+L Qum)GOD*(m—k)x

[Stpmpr (m) + 1pmpF) ' e(m).

4. COMPUTATIONAL COMPLEXITY

We note that although the IPMDF algorithm is updated in
the time-domain, the error e(m) is generated using frequency
domain coefficients and hence five FFT-blocks are required.
Since a 2N point FFT requires 2N log, N real multiplications,
the number of multiplications required per output sample for
each algorithm is described by the following relations:

IPNLMS : 4L

FLMS 8+ 10log, L
MDF 8K + (4K +6)log, N
IPMDF 10K + (4K 4-6)logy N.

It can be seen that the complexity of IPMDF is only modestly
higher than MDF. However, as we shall see in Section 5, the
performance of IPMDF far exceeds that of MDF for both
speech and white Gaussian noise (WGN) inputs.
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F igure 2: Impulse responses used in simulations: (a) sparse and (b) dis-
persive.
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F igure 3: IPMDF convergence for different N with sparse impulse re-
sponse.

5. SIMULATION RESULTS

We now wish to compare, by way of simulation, the per-
formance of MDF and IPMDF in the context of network
echo cancellation. We illustrate the robustness of IPMDF
to ‘sparseness’ of the impulse response using two different
echo paths h each of length L = 512 as shown in Fig. 2. The
adaptive filter h(m) was chosen to be of the same length as h
and we define the normalized misalignment as

[ —h(m)|/|[I]|?. (23)

In all our simulations, the sampling frequency is 8 kHz and
the signal-to-noise ratio is 30 dB while the following param-
eters were chosen for all simulations:

=075 =[1-1/@L)N, =1x(1- ),
Smpr(0) = 2/100, ypr= 220N/L,
Sipmpr(0) = (1= ) §/200and pmpr =20(1— ) $N/(2L).

5.1 Sparse impulse response simulations

In the first experiment, a sparse impulse response as shown
in Fig. 2(a) was used. Figure 3 shows the convergence with
various frame-sizes N for IPMDF. It can be seen that the
convergence is faster for smaller N since the adaptive filter
coefficients are being updated more frequently. The normal-
ized misalignment of the IPNLMS, IPMDF and MDF algo-
rithms is compared in Fig. 4 using a WGN input sequence.
The frame-size for IPMDF and MDF were N = 64 while
the step-size of IPNLMS was adjusted so that its final mis-
alignment is the same as IPMDF and MDF. This corresponds
to pnoms = 0.15. We can see that there is a significant
improvement in normalized misalignment of approximately
5 dB for the IPMDF compared to MDF and IPNLMS.

The tracking performance of the proposed IPMDF algo-
rithm is now compared with MDF and IPNLMS for WGN
input sequence as shown in Fig. 5. In this simulation an echo
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F igure 4: IPMDF, MDF and IPNLMS algorithms for a sparse impulse
response.
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Figure 5: IPMDF and MDF and IPNLMS algorithms for a sparse impulse
response with echo path change at 3 s.

path change, comprising an additional 12 samples delay, was
introduced after 3 s, and N = 64. We see that the IPMDF
algorithm achieves the fastest initial convergence. When
compared with MDF, IPMDF has higher tracking capability
achieving approximately 8 dB improvement in normalized
misalignment following the echo path change at 3 s. When
compared to [IPNLMS, the improvement in tracking capabil-
ity of IPMDF is approximately 2 dB. This modest improve-
ment is limited by the inherent delay that exists in frequency
domain algorithms.

We have also tested using speech from a male talker as
shown in Fig. 6. The sparse impulse response was delayed
by an additional 12 samples at 4 s. It can be seen that the
normalized misalignment of IPMDF is approximately 8 dB
lower than that of MDF before the echo path change was
introduced. The IPMDF algorithm exhibits a 4 dB improve-
ment in normalized misalignment as compared to MDF after
an echo path change was introduced.

5.2 Dispersive impulse response with speech input

In this last simulation, we illustrate that the performance of
the IPMDF is better than that of the MDF algorithm even for
a dispersive impulse response such as shown in Fig 2(b) us-
ing speech input from a male talker. Figure 7 shows the nor-
malized misalignment plot of IPMDF and MDF with N = 64
for both algorithms. It can be seen that the convergence per-
formance for IPMDF is approaching 1 dB higher than MDF
even for this dispersive impulse response.

6. CONCLUSION

We have proposed the IPMDF algorithm for echo cancella-
tion with sparse impulse responses. This algorithm exploits
both the improvement in convergence brought about by the
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Figure 6: IPMDF and MDF algorithms for a sparse impulse response with
speech input and echo path change at 4 s.

Speech

Normalized Misalignment (dB)

4
Seconds

Figure 77: IPMDF and MDF algorithms for a dispersive impulse response
using speech.

proportionality control of IPNLMS and the efficient imple-
mentation in the frequency-domain of MDF. Simulation re-
sults, using both WGN and speech inputs, have shown that
the improvement in initial convergence and tracking of IP-
MDF over MDF for both sparse and dispersive impulse re-
sponses far outweighs the modest increase in computational
cost.
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