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ABSTRACT

The use of a centralized acoustic echo canceller in the mo-
bile switching center of a GSM network allows the ope-
rator to enhance the audio quality before transmission to
all subscribers. However, the main problem is the impact
of the speech coder/decoder nonlinearities along the echo
path. In this paper, we propose a combined acoustic echo
canceller/post-filter based on perceptual properties to reduce
the coding noise. Theoretical and experimental comparisons
against classical solutions are given to evaluate the perfor-
mance of the proposed approach in a centralized context of
echo cancellation.

1. INTRODUCTION

Acoustic echo is a major problem in telecommunications in
the GSM network where echo delay is especially annoying
for speakers. There is an evident need for an acoustic echo
canceller (AEC) to overcome this problem, particularly when
poor quality mobile phones are used and in case of hands-free
communication. The classical solution is to implement AEC
in local user terminals. However, recent studies and appli-
cations of AEC [1, 2, 3, 4] propose a centralized AEC, i.e.
located in the mobile switching center (MSC). This attrac-
tive configuration can significantly cancel the echo for all the
subscribers and improve the communication interactivity for
terminals having deficient AEC.
Low-bit-rate speech coder/decoder -such as GSM-EFR,
AMR-NB,..- used in GSM network introduce distortions in
the far-end and the near-end microphone signals [2, 4]. The
main problem of a centralized AEC is the nonlinearity in-
troduced by the speech codec, which are cascaded along the
echo path as shown in Figure 1. In such application where
an adaptive linear filter is used to identify the acoustic echo
path, a conventional AEC is not sufficient and does not guar-
antee an imperceptible echo. In the same way, a centralized
AEC based on classical nonlinear adaptive filtering [5] can-
not handle nonlinear characteristics of the GSM network.
As a first solution to this problem, we have proposed in [2]
a centralized combined AEC/post-filter system: a classical
linear AEC identifies roughly the echo path, and a time do-
main post-filter which operates as a noise reduction system is
applied to the residual echo. To improve the performance of
this technique, we propose in this paper an original post-filter
that incorporates perceptual properties.
Section 2 describes the problem of a centralized AEC in
mobile communication. The AEC/post-filter structure is re-
viewed and the aspect of its application to a centralized con-
text is discussed in Section 3. Theoretical and experimental
comparisons with the proposed AEC/perceptual post-filter

Figure 1: Centralized AEC for a communication with a mo-
bile.

are presented in Section 4.

2. CENTRALIZED AEC PROBLEM IN MOBILE
COMMUNICATION

Assuming that the radio channel is ideal, this section
addresses the problem of centralized AEC when a communi-
cation with a mobile is considered (see Figure 1). In order to
cancel the echo generated by the mobile terminal, the MSC
seems to be a judicious location to implement a centralized
AEC.
The input of this AEC scheme (see the bold style drawing
in Figure 1) corresponds to a decoded signal x̄n and the
reference signal is the uplink decoded output ȳn. The copy
of the downlink codec operation in the AEC path enables
the compensation of the downlink channel nonlinearity. The
adaptive identification scheme equivalent to this centralized
AEC is depicted in Figure 2. The entire nonlinear echo path
to be identified is a cascade of an acoustic echo path, which
is described by an impulse response F with Q coefficients,
followed by a nonlinear function that represents the GSM
codec.

In this section, we study the theoretically performance of
a classical linear adaptive AEC in the centralized context.
In the following, the time evolution of the adaptive filter Hn is
controlled by the Normalized Least Mean Squares (NLMS)
algorithm which is expressed as:

en = ȳn −HT
n−1 · X̄n (1)

Hn = Hn−1 + m
en

X̄T
n · X̄n

· X̄n (2)



Figure 2: Equivalent adaptive identification scheme of the
centralized AEC given in Figure 1.

where,
- en is the residual echo signal (a priori error).
- ȳn represents the microphone signal passed through the
speech codec.
- X̄n = [x̄n, ..., x̄n−P+1]

T is a vector of the P past samples of
the decoded far-end signal x̄n.
- Hn = [h0

n, ..,h
P−1
n ]T represents the adaptive filter vector of

length P.
In the case (P = Q), the adaptive filter Hn corresponds to the
optimal Wiener filter given by:

Hopt = R−1
X̄ X̄ rȳx̄ (3)

where R−1
X̄ X̄ is the inverse auto-correlation matrix of the vector

X̄n and rȳx̄ is the cross-correlation vector between signals x̄n
and ȳn.
In a first approach, we can assume that the codec operation is
a simple addition of a quantization noise by

n. Therefore, we
can consider the decoded microphone signal as:

ȳn = yn +by
n

Then Equation (1) becomes:

en = FT X̄n +by
n −HT

n X̄n (4)

Furthermore, since F = R−1
X̄ X̄ ryx̄, Equations (3) and (4) can be

written as
Hopt = F +R−1

X̄ X̄ rby x̄ (5)

and
eopt = by

n − (R−1
X̄ X̄ rby x̄)

T X̄n, (6)

respectively. Hence, the optimal residual echo is audible and
still too high to achieve the goal of echo cancellation. As
a consequence, the use of a traditional conventional AEC is
not sufficient in the presence of codec nonlinear effects.
In order to enhance the performance of the classical AEC, we
propose in the next section a centralized AEC that incorpo-
rates a post-filter which is able to reduce this residual echo.

3. CENTRALIZED COMBINED AEC/POST-FILTER

3.1 Principle

Most of noise reduction methods are based on short-term
spectral attenuation techniques. Such methods introduce
an extra delay due to the time to frequency domain analy-
sis/synthesis. We propose in this section to use an adaptive

noise reduction filter H2
n implemented in the time domain,

whose coefficients are updated with the NLMS algorithm.
A copy of this post-filter is applied to the residual echo e1

n
available at the output of the classical AEC H1

n . Figure 3
presents the structure of this combined AEC/post-filter.

Figure 3: Centralized combined AEC/post-filter.

Similar systems have been used in speech enhancement
[6] to reduce the residual echo related to long impulse re-
sponse of the echo path. In our application, we do not only
take into account the later phenomenon but we also reduce
the quantization noise generated by the codec operation.

3.2 Experimental results

We have studied theoretically in [2] the importance of the
post-filter in a centralized context for a mobile-land call. The
analysis of this approach is extended here to a mobile to mo-
bile context and we propose to validate the results presented
in [2] by some simulations.
The input signal is a speech encoded with the codec GSM-
EFR (Enhanced Full Rate). The length P of the AEC adap-
tive filter (H1

n ) and the one of the echo path Q are equal to 300
and 2000, respectively. Actually, F is room impulse response
of 570 ms reverberation time. The adaptive filter H2

n updated
by the NLMS algorithm, is designed to minimize the mean
square error E[(e2

n)
2]. The time evolution of H2

n is described
by:

e2
n = e1

n −H2
n−1Ȳn (7)

H2
n = H2

n−1 + m
e2

n

Ȳ T
n · Ȳn

Ȳn (8)

where Ȳn is the vector of the M past observations of the
signal ȳn. Notice that M corresponds to the length of the
post-filter which is fixed to 80 in the following. As depicted
in Figure 3, the adaptive filter H2

n is duplicated (represented
by a dashed arrow) and applied to the residual echo e1

n.
The local speech is not considered in this case, and the Echo

Return Loss Enhancement (ERLE= 10log E[(ȳn)2]
E[(en)2]

) is used
to evaluate the echo reduction. Figure 4 represents the time
evolution of the ERLE related to two cases, the solid line
is the classical AEC (without post-filter: en = e1

n) and the



dashed line is AEC/post-filter (with post-filter: en = e3
n).

0 20 40 60 80 100 120 140 160 180
−5

0

5

10

15

20

25

30

Frame (blocks of 64 ms)

E
R

LE
 (d

B
)

AEC
AEC/post−filter

Figure 4: ERLE for AEC with and without post-filter.

The simulation results show that the combined
AEC/post-filter system significantly outperforms the
conventional AEC system. In average, an additional
attenuation of 5 to 10 dB is introduced.

4. AEC/PERCEPTUAL POST-FILTER

4.1 Principle

The previous results illustrate that the AEC/post-filter
system is useful in a centralized context. In this section, we
propose an improvement of this technique by using a robust
post-filter that exploits perceptual properties.
Our purpose is to estimate a perceptual filter giving more
importance to high power frequency components, i.e.
formant frequencies.
The global structure of the proposed centralized
AEC/perceptual post-filter is depicted in Figure 5. The
following operations are performed for each block of 160
residual echo e1

n samples:
(1)- The signal e1

n is analyzed to extract coefficients of an
mth order linear prediction (LP) filter which is given by:

A(z) = 1+
m

å
i=1

aiz
−i (9)

(2)- This LP filter A(z) is used to compute the desired per-
ceptual filter

W (z) =
A( z

g 1
)

A( z
g 2

)
(10)

where 0 < g 1 < g 2 ≤ 1 are the perceptual factors.
(3)- In order to avoid filter instability related to the au-
toregressive moving-average (ARMA) structure, we approx-
imate W (z) by a linear phase filter Ŵn with m coefficients.
Before using the signal ȳn as the input signal of the adaptive
post-filter H2

n , a copy of the linear phase filter Ŵn is applied to
ȳn as shown in Figure 5. For this, it is necessary to introduce
a delay of D samples in the reference branch, with

D =

{ m
2 ifm is even

m−1
2 ifm is odd

(11)

Figure 5: Centralized combined AEC/perceptual post-filter.

In the following, m equals to 10, the choice of the per-
ceptual factors g 1 and g 2 makes it possible to control the per-
ceptual weighting function.
Indeed, if g 1 = g 2 ≃ 1, the perceptual filter W (z) only delays
the signal of D samples: in this case, W (z) has no effect and
the system corresponds to the previous case of AEC/post-
filter structure (Section 3).
On the other hand if the difference between g 1 and g 2 in-
creases, W (z) is able to give more importance to high power
frequency components of the echo signal.

4.2 Comparative performance

4.2.1 H2
n improvement in presence of W (z)

To well emphasize the usefulness of W (z), we compare the
behavior of H2

n in two cases: on the one hand, when H2
n

operates without W (z) (g 1 = g 2 = 0.9) and on the other hand
when H2

n operates with W (z) (g 1 = 0.1, g 2 = 0.9).
In both cases, the input signal is a simulated autoregressive
(AR) order 10 stationary process. The AR parameters are
derived from LPC analysis of the French vowel “i”. The
amplitude and the spectrum of this “i-like” signal are shown
in Figure 6.
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Figure 6: Artificial input signal: (a) Amplitude, (b) PSD.



Notice that in this experience the echo path (F , codecs)
and the AEC/post-filter (H1

n , H2
n ) parameters are the same

than in Section 3.2. Figure 7(a) shows the power spectral
density (PSD) of the echo signal ȳn. Figure 7(b) represents
the frequency response of the post-filter H2

n in two cases: the
solid line corresponds to the classical AEC/post-filter and
the dashed line to the AEC/perceptual post-filter.
From Figure 7, it is clearly observed that the introduction
of the perceptual filter W (z) in the post-filter computation
mainly attenuates the frequency harmonic components of the
echo signal. An extra attenuation of 10 dB can be observed
on the overall spectrum of e1

n.
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Figure 7: (a) PSD of echo signal, (b) Amplitude response of
H2

n with and without perceptual filter W (z).

4.2.2 Simulation with real speech signal

In the previous experiment, an artificially simulated signal
is used to illustrate the behavior of the proposed per-
ceptual post-filter. In this part, the performance of the
AEC/perceptual post-filter (Section 4) and the AEC/post-
filter (Section 3) are compared in the case of real speech
echo signals. Comparisons are made by observing in Figure
8 the ERLE time evolution for the two cases.

It can be shown that the AEC/perceptual post-filter (solid
line) increases the ERLE in average of 5 to 10 dB com-
pared to the classical AEC/post-filter technique (dashed
line). These objective results are corroborated by informal
listening tests where extra echo reduction is highly subjec-
tively reduced. These results demonstrate the practical inter-
est of the proposed centralized AEC system.

5. CONCLUSION

This paper has presented a centralized AEC/post-filter based
on perceptual properties to reduce the coding noise.
Simulations on both artificial and speech signals show that
the proposed AEC system is very promising for acoustic
echo suppression when low-bit-rate speech codecs are inte-
grated in the echo path and presents robust performance.
In this paper, first results are given in term of echo reduction
in single talk operations (i.e. when only the far-end speech
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Figure 8: ERLE for AEC/post-filter with and without per-
ceptual filter.

is active). Future work will concern the behavior of the pro-
posed approach for double talk situations (i.e. when the far-
end and the near-end speech are active simultaneously). In
this case, the AEC scheme is more complicated and need an
echo control strategy to switch to simple talk to double talk
context and vice versa.
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