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ABSTRACT

We consider the problem of approximating a nonlinear
(unnormalized) Feynman–Kac flow, in the special case
where the selection functions can take the zero value.
We begin with a list of several important practical sit-
uations where this characteristics is present. We study
next a sequential particle algorithm, proposed by Oud-
jane (2000), which guarantees that the particle system
does not die. Among other results, we obtain a central
limit theorem which relies on the result of Rényi (1957)
for the sum of a random number of independent ran-
dom variables.

1. INTRODUCTION

We consider a particle approximation of the linear (un-
normalized) flow and of the associated nonlinear (nor-
malized) flow, defined by

〈gn,f〉 = E[f(Xn)
n

Õ
k=0

gk(Xk) ] , 〈mn,f〉 =
〈gn,f〉
〈gn,1〉

,

for any bounded measurable test–function f , where
{Xk , k = 0,1, · · · ,n} is a Markov chain with ini-
tial probability distribution h0 and transition kernels
{Qk , k = 1, · · · ,n}, and where {gk , k = 0,1, · · · ,n}
are given bounded measurable nonnegative functions,
known as selection or fitness functions. We make
throughout this paper the minimal assumption that
〈gn,1〉 > 0, or equivalently that 〈h0,g0〉 > 0 and
〈mk−1 Qk,gk〉 > 0 for any k = 1, · · · ,n, otherwise the
problem is not well defined. Particle approximations,
also known as sequential Monte Carlo methods, have
numerous practical applications, see [6], including par-
ticle filtering, and have been extensively studied in [2].
We focus here on the special case where the selection
functions can possibly take the zero value, which oc-
curs in many practical situations

• simulation of rare events using an importance split-
ting approach [4],

• simulation of a Markov chain conditionned or con-
strained to visit a given sequence of subspaces of
the state space (this includes tracking a mobile in
the presence of obstacles : when the mobile is hid-
den behind an obstacle, occlusion occurs and no
observation is available at all, however this infor-
mation can still be used, with a selection function
equal to the indicator function of the region hidden
by the obstacle),

• simulation of a r.v. in the tail of a given probability
distribution,

• nonlinear filtering with bounded observation noise,
• implementation of a robustification approach in

nonlinear filtering, using a truncation of the like-
lihood function [9, 12],

• algorithms of approximate nonlinear filtering,
where hidden state and observation are simulated
jointly, and where the simulated observation is val-
idated against the actual observation [3, 14], e.g.
if there is no explicit expression available for the
likelihood function, or if there does not even exist a
likelihood function (nonadditive observation noise,
noise–free observations, etc.).

2. NONSEQUENTIAL PARTICLE
ALGORITHM

Recall that the evolution of the sequence {mk , k =
0,1, · · · ,n} is described by the following diagram

mk−1 −→ hk = mk−1 Qk −→ mk = gk ·hk ,

with initial condition m0 = g0 ·h0, where the notation
· denotes the projective product. The idea behind the
particle approach is to look for an approximation

mk ≈ mN
k =

N

å
i=1

wi
k dx i

k
,

in the form of the weighted empirical probability dis-
tribution associated with the particle system SN

k =



(x i
k,w

i
k , i = 1, · · · ,N), where N denotes the number of

particles. In practice, particles

• are selected within the current particle system
according to the respective weights (wi

k−1 , i =
1, · · · ,N) (selection step),

• move according to the Markov kernel Qk (mutation
step),

• are weighted by evaluating the fitness function gk
(weighting step).

As a result, each particle x i
k has the probability distribu-

tion mN
k−1 Qk and its weight wi

k is proportional to gk(x i
k),

for any i = 1, · · · ,N. If the function gk can possibly
take the zero value, and even if 〈mk−1 Qk,gk〉> 0, it can
happen that gk(x i

k) = 0 for any i = 1, · · · ,N, i.e. it can
happen that the evaluation of the function gk returns the
zero value for all the particles generated at the end of
the mutation step, in which case the particle systems
dies out and the algorithm cannot go on. A reinitializa-
tion procedure has been proposed and studied in [3], in
which the particle system is generated from an arbitrary
restarting probability distribution n whenever extinc-
tion occurs. Alternatively, one could be interested by
the behavior of the algorithm until the extinction time
of the particle system, defined by

tN = inf{k ≥ 1 : 〈SN(mN
k−1 Qk),gk〉 = 0} ,

where the notation SN(m) denotes the empirical prob-
ability distribution associated with an N–sample with
common probability distribution m . Under the assump-
tion 〈gn,1〉 > 0, the extinction probability P[tN ≤ n]
that the algorithm can not go on until the time instant n
goes to zero with exponential rate [2, Theorem 7.4.1].

Example 2.1. [Binary selection] In the special case of
binary selection functions (taking only the value 0 or
1), such as indicator functions of Borel subsets for in-
stance, it holds

〈gn,1〉 = P[g0(X0) = · · · = gn(Xn) = 1] ,

and on the good set {tN > n}

〈gN
n ,1〉 =

n

Õ
k=0

〈SN(mN
k−1 Qk),gk〉 =

n

Õ
k=0

|IN
k |
N

,

where

IN
k = {i = 1, · · · ,N : gk(x i

k) = 1} ,

denotes the set of successful particles within an N–
sample with common probability distribution mN

k−1 Qk.
In other words, the probability of a successful se-
quence is approximated as the product of the fraction
of successful particles at each generation. Notice that
the computational effort, i.e. the number N of simu-
lated particles at each generation, is fixed in advance,
whereas the number |IN

k | of successful particles at the
k–th generation is random.

For the nonsequential particle algorithm with a con-
stant number N of particles, the following results have
been obtained : a nonasymptotic estimate [2, Theo-
rem 7.4.3]

sup
f :‖f‖=1

E|1
(tN > n)

〈mN
n ,f〉−〈mn,f〉 |

≤ cn√
N

+P[tN ≤ n] ,

and a central limit theorem (see [2, Section 9.4] for a
slightly different algorithm)
√

N [1
(tN > n)

〈mN
n ,f〉−〈mn,f〉 ] =⇒ N(0,vn(f))

as N ↑ ¥, for any bounded measurable test function f ,
with the following expression

vn(f) =
n

å
k=0

〈hk, |gk Rk+1:n [f −〈mn,f〉] |2 〉
〈hk,gk Rk+1:n 1〉2 ,

for the asymptotic variance. In the expression above

Rk+1:n f(x) = Rk+1 · · ·Rn f(x)

= E[f(Xn)
n

Õ
p=k+1

gp(Xp) | Xk = x] ,

where the nonnegative (unnormalized) kernel Rp is
defined by Rp(x,dx′) = Qp(x,dx′)gp(x′) for any p =
1, · · · ,n, and in particular for f ≡ 1

gk:n(x) = gk(x)Rk+1:n 1(x) = E[
n

Õ
p=k

gp(Xp) | Xk = x ] .

In the simple case where the fitness functions are pos-
itive, i.e. cannot take the zero value, these results are
well–known and can be found in [5, Proposition 2.9,
Corollary 2.20], where the proof relies on a central
limit theorem for triangular arrays of martingale incre-
ments, or in [8, Theorem 4], where the same central
limit theorem is obtained by induction.

3. SEQUENTIAL PARTICLE ALGORITHM

The purpose of this work is to study a sequential parti-
cle algorithm, already proposed in [11, 10], which au-
tomatically keeps the particle system alive, i.e. which
ensures its non–extinction. For any level H > 0, and
for any k = 0,1, · · · ,n, define the random number

NH
k = inf{N ≥ 1 :

N

å
i=1

gk(x i
k) ≥ H sup

x∈E
gk(x)} ,

of particles, where the r.v.’s x 1
k , · · · ,x i

k, · · · are i.i.d.
with common probability distribution h0 (for k = 0),



and common probability distribution mH
k−1 Qk (for k =

1, · · · ,n). The particle approximation

mk ≈ mH
k =

NH
k

å
i=1

wi
k dx i

k
,

is now parameterized by the level H > 0, and is as-
sociated with the particle system SH

k = (x i
k,w

i
k , i =

1, · · · ,NH
k ), where NH

k denotes the random number of
particles. In practice, particles

• are selected within the current particle system
according to the respective weights (wi

k−1 , i =

1, · · · ,NH
k−1) (selection step),

• move according to the Markov kernel Qk (mutation
step),

• are weighted by evaluating the fitness function gk
(weighting step).

As a result, each particle x i
k has the probability distribu-

tion mH
k−1 Qk and its weight wi

k is proportional to gk(x i
k),

for i = 1, · · · ,NH
k . If 〈mH

k−1 Qk,gk〉 > 0 — a sufficient
condition for which is

ĝk(x) = Qk gk(x) = E[gk(Xk) | Xk−1 = x] > 0 ,

for any x in the support of mH
k−1 — then

〈mH
k−1 Qk,gk〉 = 〈mH

k−1, ĝk〉 > 0 ,

and the random number NH
k of particles is a.s. finite,

with NH
k ≥ H obviously. Moreover

〈SNH
k (mH

k−1 Qk),gk〉 =
1

NH
k

NH
k

å
i=1

gk(x i
k)

≥ H
NH

k

sup
x∈E

gk(x) > 0 ,

by construction, i.e. the particle system never dies out
and the algorithm can always go on. We can show in
addition that

NH
k

H
−→ rk =

sup
x∈E

gk(x)

〈mk−1 Qk,gk〉
< ¥ ,

in probability, with rate 1/
√

H.

Example 3.1. [Binary selection] In the special case of
binary selection functions (taking only the value 0 or
1), such as indicator functions of Borel subsets for in-
stance, it holds

〈gH
n ,1〉 =

n

Õ
k=0

〈SNH
k (mH

k−1 Qk),gk〉 =
n

Õ
k=0

H
NH

k

,

where in this case, for any integer H ≥ 1

NH
k = inf{N ≥ 1 : |IN

k | = H} ,

and for any integer N ≥ 1

IN
k = {i = 1, · · · ,N : gk(x i

k) = 1} ,

denotes the set of successful particles within an N–
sample with common probability distribution mH

k−1 Qk.
Here again, the probability of a successful sequence is
approximated as the product of the fraction of success-
ful particles at each generation. In opposition to the
nonsequential algorithm, notice that the number H of
successful particles at each generation is fixed in ad-
vance, whereas the computational effort, i.e. the num-
ber NH

k of simulated particles needed to get H success-
ful particles exactly at the k–th generation, is random.

For the sequential particle algorithm, with a ran-
dom number of particles defined by the level H > 0, the
following nonasymptotic estimate has been obtained
in [10, Theorem 5.4]

sup
f :‖f‖=1

E| 〈mH
n −mn,f〉 | ≤

c′n√
H

.

where it is formulated under a mixing assumption
which is not needed here but gives a constant c′n uni-
formly bounded in time. The main contribution of this
paper is the following central limit theorem.

Theorem 3.2. If 〈mH
k−1, ĝk〉 > 0 for any k = 1, · · · ,n,

then √
H 〈mH

n −mn,f〉 =⇒ N(0,vseq
n (f))

as H ↑ ¥, for any bounded measurable test function f ,
with the following expression

vseq
n (f) =

n

å
k=0

〈hk, |gk Rk+1:n [f −〈mn,f〉] |2 〉
〈hk,gk Rk+1:n 1〉2

1
rk

,

for the asymptotic variance.

Two different proofs can be given for Theorem 3.2.
A first proof follows the approach of [5, Proposi-
tion 2.9, Corollary 2.20], and relies on an enumeration
of all particles across generations with random sizes,
and on a central limit theorem for triangular arrays of
martingale increments [1, Theorem 2.8.42]. An alter-
nate proof can also be given, which follows the ap-
proach of [8, Theorem 4] by induction, and relies on a
central limit theorem for the sum of a random number
of random variables [13], which is known in sequential
analysis since the 1950’s, see also [7, Theorem I.3.1]
or [15, Theorem 2.40].



4. CONCLUSION

To get a fair comparison of the nonsequential and se-
quential particle approximations, we can use the time–
average

1
n+1

n

å
k=0

NH
k ,

of the number of particles, which is an indication of
how much computing power has been used, as a nor-
malizing factor instead of the level H > 0. Since

1
H

[
1

n+1

n

å
k=0

NH
k ] −→ 1

n+1

n

å
k=0

rk ,

in probability, and using the Slutsky lemma, we obtain

[
1

n+1

n

å
k=0

NH
k ]1/2 〈mH

n −mn,f〉 =⇒ N(0,v∗n(f)) ,

as H ↑ ¥, for any bounded measurable test function f ,
with the following expression for the asymptotic vari-
ance

v∗n(f) = [
1

n+1

n

å
k=0

rk ] vseq
n (f) .

Notice that the asymptotic variance vn(f) for the non-
sequential particle algorithm and the asymptotic vari-
ance v∗n(f) for the renormalized sequential particle al-
gorithm coincide, in the special case where r0 = r1 =
· · · = rn.
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de Dépollution Biologique. Thèse de Doc-
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