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ABSTRACT
We construct in this paper a Decision Feedback Equalizer (DFE) for
a time-varying transmission system. The equalizer is imposed with
a structure analogous to an Finite Impulse Response Basis Expan-
sion Model (FIR-BEM). For this parametric equalizer, we compute
its taps semi-blindly, following a Recursive Least Squares (RLS)
approach. Simulation results confirm that the proposed algorithm is
robust and can tolerate channel modeling errors.

1. INTRODUCTION

Reliable high data-rate telecommunication between moving trans-
mitters and receivers is gaining more and more attention nowadays.
The channel becomes fast fading due to the Doppler spread result-
ing from the mobility, and makes many existing equalizers that are
effective for time-invariant channel less valid. To deal with such
rapid-fading and dispersive channels, we need not only a simple
and precise channel model, but also a robust and optimal detection
algorithm.

The time-varying channel can be tracked by some parametric
models, which are usually composed of finite-length channel co-
efficients expanded by certain time series. With the expansion se-
ries defined, we need only estimate those finite-length channel co-
efficients to reconstruct the channel. Some channel model exam-
ples can be found as the Finite Impulse Response Basis Expan-
sion Model (FIR-BEM) in [1] among others, the Discrete Prolate
Spheroidal model (DPS) in [2] or the polynomial model in [3] etc.
These models are differentiated in their own expansion series and
the modeling precision with respect to the Jakes’ model [4], which
is widely considered as a paradigm model for the time-varying
channels.

We follow the practice in [5, Chapter 16] to model the channel
as an FIR-BEM. The time-variation of the channel can be efficiently
handled with by a Decision Feedback Equalizer (DFE) that bears
also an FIR-BEM structure. Although this equalizer can be calcu-
lated based on the channel knowledge and renders an outstanding
performance, the question arises as to how the receiver is able to
access the channel knowledge. The authors in [6,7] presented meth-
ods to estimate the FIR-BEM coefficients, but the precision is not
completely satisfactory due to the system error accompanying the
channel models and the noise disturbance as well. The work in [8]
skipped this intermediate step and estimated the equalizer directly.
Because the equalizer was obtained solely based on the pilots, this
approach had to compromise between the bandwidth efficiency and
the equalization performance.

This paper can be deemed as an improvement to [8] by using
an adaptive approach for direct equalizer estimation. The update of
the equalizer estimate and the data symbol estimate is accomplished
iteratively. One of the virtues of this approach is that it is free from
any specific channel model assumption and thus can be cast to most
real transmission scenarios.

The rest of the paper is organized as follows. In the next sec-
tion we put forward the system model and briefly describe the FIR-
BEM. In Section 3 the equalizer architecture is presented. In Sec-
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tion 4 we show how to estimate the equalizer taps semi-blindly. To
support our claim, we exhibit the simulation results in Section 5.

Notation: We use upper (lower) bold face letters to denote ma-
trices (column vectors). (·)∗, (·)T and (·)H represent conjugate,
transpose and complex conjugate transpose (Hermitian), respec-
tively. R(·) stands for the real part, and I (·) for the imaginary
part of a complex number. ⊗ stands for the Kronecker product.
IN denotes an N ×N identity matrix and 0M×N denotes an M ×N
all-zero matrix. max{a,b} gives the bigger value between a and b.

2. SYSTEM MODEL

We consider a SIMO system with one input and A outputs. The
latter may be obtained by a combination of spatial and temporal
oversampling. Suppose we transmit a data symbols sequence s =
[
s[0], · · · ,s[N −1]

]T , the received discrete-time sequence at the ath
output can be expressed as

y(a)[n] =
+¥

å
n=−¥

h(a)[n;n ]s[n−n ]+w(a)[n], (1)

for a ∈ {1, · · · ,A}. Here w(a)[n] denotes the additive noise at the
ath output, for n = 0, · · · ,N − 1. We observe that the channel rep-
resented by h(a)[n;n ] has infinite impulse responses, whose values
are time-varying due to the Doppler spreading. Often, the chan-
nel can be simplified by assuming it to be an (L + 1)-tap FIR e.g.
h(a)[n; l] ≈ 0 for l < 0 or l > L. Further, the time-variation of each
tap can be approximated by a truncated Fourier expansion series
(FIR-BEM [1]):

h(a)[n;n ] ≈
L

å
l=0

d [n − l]
Q/2

å
q=−Q/2

h(a)
q,l e j2pqn/P. (2)

Here, P denotes the window size under consideration, within which
the channel coefficient hq,l remains constant. In line with the time-
frequency duality, the value Q in the above series must satisfy the
Nyquist criterion Q/(2P) ≈ fmax, where fmax represents the nor-
malized overall Doppler spread among all the A channels. In other
words, we approximate the time-varying taps by a superposition of
time-invariant coefficients modulated by complex exponentials.

Hence, by substituting (2) in (1), we express the received se-
quence for the ath output as

y(a)[n] =
L

å
l=0

Q/2

å
q=−Q/2

h(a)
q,l e j2pqn/Ps[n− l]+w(a)[n]. (3)

for n = 0, · · · ,N −1.

3. PARAMETRIC EQUALIZER

At the receiver, we build a Decision Feedback Equalizer (DFE)
whose architecture is depicted in Fig. 1. The serial feedFoward
Equalizer (FE), which processes the received samples y(a)[n] for
a = 1, · · · ,A, respectively, is followed by a closed loop consisting
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Figure 1: The block diagram of a decision feedback equalizer

of a decision device and a serial feedBack Equalizer (BE). The de-
cision device serves in many cases as a memoryless nonlinear quan-
tizer Q(·), which searches for the closest constellation point to the
input signal š[n] = Q(ŝ[n]) and then feed this result back to the BE.

[5, Chapter 16] presented a scheme to construct the FE as well
as the BE in a similar FIR-BEM fashion as the channel, i.e., we de-
sign the FE to have L′+1 taps, with each of the tap being modulated
by Q′ +1 complex exponentials:

f (a)[n;n ] =
L′

å
l′=0

d [n − l′]
Q′/2

å
q′=−Q′/2

e j2pq′n/P f (a)
q′,l′ , (4)

and the BE to have L′′+1 taps, with each of the tap being modulated
by Q′′ +1 complex exponentials:

b[n;n ] =
L′′

å
l′′=0

d [n − l′′]
Q′′/2

å
q′′=−Q′′/2

e j2pq′′n/Pbq′′,l′′ . (5)

With the taps of the FE and BE defined as above, we compute the
estimate of s[n] as

ŝ[n] =
A

å
a=1

L′

å
l′=0

Q′/2

å
q′=−Q′/2

e j2pq′n/P f (a)
q′,l′y

(a)[n−d′− l′]

−
L′′

å
l′′=0

Q′′/2

å
q′′=−Q′′/2

e j2pq′′n/Pbq′′,l′′ š[n−d′′− l′′]. (6)

Using a little different notation than in [5, Chapter 16], we introduce
in the bracket of the first term an FE delay d ′, which should satisfy
−L ≤ d′ ≤ L′ to ensure that the FE input carries the information of
s[n]. Likewise, we introduce d ′′ in the second term to denote the BE
delay. As we show later on that the equalization takes place off-line,
the causality principle observed in [5, Chapter 16] is not necessary
in this paper. As a result, when estimating s[n], the preceding as
well as the succeeding symbol estimates around it could be used
as the BE input. Therefore, we can impose a looser range on the
possible values of d′′: −L′′ ≤ d′′ ≤ 0.

An important streak of (6) is that the proposed equalizer actu-
ally modulates the received sequence onto different frequency bins.
For each of these frequency bins, there is a conventional transversal
FIR filter and their results are superimposed with each other. Since
the equalizer works on different frequency band simultaneously, its
effective taps as a sum, take on a time-varying character as well. As
we shall see in the simulation, only the equalizers equipped with
such an architecture can cope with the time variation of the channel
competently.

If we stack the in total A(L′ + 1)(Q′ + 1) + (L′′ + 1)(Q′′ + 1)

equalizer taps in one vector: v := [ f (a)
−Q′/2,0, · · · , f (A)

Q′/2,L′ ,

b−Q′′/2,0, · · · ,bQ′′/2,L′′ ]T , (6) can be written in a more concise matrix
form:

ŝ(n) = vT un, (7)

where un stands for both the FE and BE input:

un := [ỹT
n ,−s̃T

n ]T . (8)

For the FE input ỹn, it is easy to verify that

ỹn :=
(
IA ⊗ (∆n,Q′ ⊗ IL′+1)

)
[y

(1)T
n , · · · ,y(A)T

n ]T , (9)

with ∆n,q := [e j 2p
P n(− q

2 ), · · · ,e j 2p
P n( q

2 )]T and y
(a)
n :=

[
y(a)[n− d′−

L′], · · · ,y(a)[n− d′]
]T . Likewise, the BE input s̃n can be expressed

as
s̃n := (∆n,Q′′ ⊗ IL′′+1)šn, (10)

with šn :=
[
š[n − d′′ − L′′], · · · , š[n − d′′]

]T . Note that for above
notations, we assume y(a)[n] = 0 and š[n] = 0 for n < 0 and n >
N −1.

The entries of the equalizer taps v can be acquired in term of
several criteria. [5, Chapter 16] showed how to compute the MMSE
or ZF solution for these equalizer taps based on the knowledge of
the channel (FIR-BEM) coefficients given in (2). In this paper we
focus on the semi-blind case.

4. DIRECT SEMIBLIND EQUALIZATION

Direct equalization is important in real applications, especially for
transmissions over rapidly fading channels. For such cases, chan-
nel estimation is less appealing, because it is desired to reduce the
modeling error by adopting a larger FIR-BEM model (thus a bigger
Q value in (2)), but this will inevitably increase the estimation com-
plexity. Though there is a rich resource of channel estimation algo-
rithms that perform pretty well for time-invariant channels, most of
them rely on higher order statistics, which are in general extremely
hard to extract for time-varying channels.

In [8], a direct semi-blind equalization approach (without the
BE part) for doubly-selective channels is proposed, exploiting the
underlying relationship between several distinct equalizers. Re-
call that these distinct equalizers are related by taking different FE
delays d′ or modulating the received sequence onto different fre-
quency bands. This idea stems originally from the ‘Mutually Ref-
erenced Equalizers’ (MRE) proposed in [9] for frequency-selective
channel. A disadvantage of the MRE is its rather large computa-
tional burden. Besides, we are unable to benefit from all the pilots
when estimating nonlinear equalizers such as DFE, because for that
case, not only the pilot itself but also its neighboring data symbols
are required at the same time. Trying to assimilate the merits of the
DFE, we propose in this section a training-assisted iterative algo-
rithm, which runs on a symbol level: suppose at one moment we
have obtained an equalizer, which yields the data symbol estimates;
at the next moment we can use these newly estimated data symbols
in turn to update the equalizer. In this way, we are able to con-
struct the BE input by engaging the neighboring symbol estimates
obtained from previous iterations. Further, an adaptive approach
known as Recursive Least Squares [10] (RLS) will be resorted to
prevent the cumbersome matrix inversion involved during each iter-
ation.

A difficulty for a rapidly varying channel is that it is always de-
sired to accomplish some certain operation within a short interval
in case the channel situation should drastically change. This means
that, unlike the steady channel case, there are in general only a lim-
ited amount of data samples available for the adaptation procedure
to reach the convergence. We alleviate this problem in this paper by



repeating the iteration over the whole received sequence for several
times provided that the data symbols are allowed to be processed
off-line.

Prior to proceeding, let us first define ŝ(k)(n) as the estimate
of the nth data symbol before quantization that is obtained at the
kth iteration. The relationship between the symbol index n and the
iteration index k will become clearer later on. Further, if we assume
v(k−1) to be equalizer taps obtained at the (k − 1)th iteration, we
have:

ŝ(k)(n) = v(k−1)T u
(k)
n . (11)

Here, u(k)
n stands for the equalizer input at that time. In comparison

with the definition in (8), we introduce a superscript (k) in u
(k)
n to

underline the fact that the equalizer input, especially the BE input,
is on-line updated with the iteration. Thus the equalizer input must
be modified to

u
(k)
n := [ỹT

n ,−s̃
(k)T
n ]T , (12)

with
s̃
(k)
n := (∆n,Q′′ ⊗ IL′′+1)š

(k)
n . (13)

Accordingly, š
(k)
n contains the quantized estimates from the previ-

ous iterations:

š
(k)
n :=

[

from the present loop
︷ ︸︸ ︷

š(k−d′′−L′′)(n−d′′−L′′), · · · , š(k−1)(n−1),
from the previous loop

︷ ︸︸ ︷

š(max{k−N,0})(n), · · · , š(max{k−N−d′′,0})(n−d′′)
]T

,

where š(k̃)(m) denotes the quantized estimate of the mth data sym-
bol obtained at the k̃th iteration. It is worth noting that since the
iteration runs over the whole sequence for multiple loops, accord-
ingly, the BE input defined in the above expression will contain the
estimates from the present loop (the first d ′′ +L′′ estimates) as well
as from the previous loop (the last 1− d ′′ estimate). With the sim-
ilar motivation, we can characterize the relationship between the
iteration index k and the symbol index n as n = mod(k,N), where
mod(k,N) stands for the remainder of k divided by N.

With the assistance of the above notations and assuming that
there are Nt pilots whose values are perfectly known by the receiver,
we launch the weighted RLS algorithm [10] as summarized in the
following steps:
1. Set k = 0,n = 0 and prepare the equalizer input in the way given

by (12). For the inputs to the BE, zeros are filled in š
(0)
0 if the

corresponding data symbols are not pilots;
2. Choose a forgetting factor l , which is a positive constant close

to, but less than 1; Initialize the following parameters

v(0) = 0A(L′+1)(Q′+1)+(L′′+1)(Q′′+1)×1,

P(0) = d−1IA(L′+1)(Q′+1)+(L′′+1)(Q′′+1).

Here, d is a small positive constant;
3. At the kth iteration, compute the following equations:

ŝ(k)[n] = v(k−1)T ũ
(k)
n (14)

K(k) =
l−1P(k−1)ũ

(k)
n

1+l−1ũ
(k)H
n P(k−1)ũ

(k)
n

(15)

v(k) = v(k−1) +K(k)∗(g(ŝ(k)[n])− ŝ(k)[n]
)

(16)

P(k) = l−1P(k−1) −l−1K(k)ũ
(k)H
n P(k−1) (17)

4. Update the BE input in (12) with the newly obtained š(k)[n] if
s[n] is not a pilot; Increment the iteration index and go back to
the previous step.

Comparing the procedures listed above with the conventional
RLS algorithm, we make some modifications summarized in the
following remarks, which prove to be beneficial to the equalizer
performance.

Remark 1 When the desired response of the equalizer is un-
known (except for the pilots), we switch to a decision-directed fash-
ion. A zero-memory nonlinear function g(·) is therefore deployed
to calculate the a priori estimation error in (16). Some candidates
of g(·) could be:

• Quantization: Q
(
ŝ[n]

)
;

• Sato algorithm: gsgn
(
R(ŝ[n])

)
+ jgsgn

(
I (ŝ[n])

)
,

with g = E{R(s[n])2}/E{|s[n]|}.
Note that the Sato algorithm is a coarser quantization, which is pre-
ferred for the ‘closed eye’ situations. The authors in [11] suggested
combining the two alternatives to improve the convergence perfor-
mance. However, there shall be no difference for QPSK signals
since in that case g equals 1/

√
2.

Remark 2 Not only the total number, but also the positioning
of the pilots is crucial to this approach. In the simulation, we will
parse the pilots into several blocks and interleave them with the data
symbol sequence in the way depicted in Fig. 2. As typical to the
DFE, once an error arises in estimation, it is fed back and hence
propagates. The distribution of the pilots, whose desired response
is perfectly known, could help sever such error outbreaks. Empir-
ically, the distance between the pilot blocks, when the number of
the pilots is fixed, will also influence the equalization performance.
However, so far to our knowledge, these is no literature that quali-
tatively analyzed this mechanism.

... ...
MidamblePreamble Midamble Postamble

Figure 2: Positioning of the pilots

Remark 3 Though the pilots are not grouped together, we could
still launch a pure training phase by having the iteration initially
only run over the pilots-related samples. This is only possible if
the size of the pilot blocks is greater or equal to the size of the BE.
Simulation results show that by this means the algorithm converges
much faster than without the pure training phase.

Remark 4 For the implementation of this algorithm, the as-
sumption of the FIR-BEM channel model, on which the MMSE
(ZF) equalizer in Section 3 is based, is no longer indispensable here,
since no channel knowledge is resorted to for the equalizer compu-
tation. More strongly, we can apply this approach without assuming
any specific channel model.

5. SIMULATION RESULTS

We present simulations for a SIMO transmission system using one
transmit antenna and two receive antennas. Further, the sample
stream from each receive antenna is oversampled with a factor of
two. Hence, we obtain four channel outputs.

We test the proposed algorithm by transmitting a QPSK se-
quence of length N = 400. It is cast to a time-varying channel with a
normalized Doppler frequency fmax = 0.0025 and a memory length
L = 3. For the simulation, the channels are generated based on both
the Jakes’ model and on the FIR-BEM. In order for the FIR-BEM
to fit the Jakes’ model tightly within a prescribed window P = N,
we must set Q = 2 to satisfy Q/(2P) ≈ fmax. The eventual BER
is an average over 1000 Monte Carlo runs, where in each run we
generate a different channel, noise and data realization.

Test case 1. We first present the performance of an MMSE
equalizer in Fig. 3, which is computed based on the knowledge of
the FIR-BEM coefficients as shown in [5, Chapter 16]. The equal-
izer is equipped with the parameters [L′,Q′,L′′,Q′′] = [7,6,4,4]. We
observe that the MMSE equalizer suffers an error floor in the Jakes’
channel. This must be ascribed to the modeling error of the FIR-
BEM, whose influence becomes more prominent at the higher SNR



than the influence of the disturbance noise. There are several tech-
niques to reduce the modeling error, i.e. by taking a more complex
FIR-BEM (thus a bigger Q) or using exponential basis with a finer
frequency resolution [12].
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Figure 3: MMSE equalization performance

Test case 2. The performance of the proposed semi-blind equal-
ization is presented in Fig. 4. Here, we use a modest equalizer
with parameters [L′,Q′,L′′,Q′′] = [3,2,1,2] to decrease the estima-
tion difficulty. Of the transmitted symbols we assume that 25%
are pilots, which are grouped in 5 blocks. We insert these blocks
equi-distantly to the data sequence in the way as Fig. 2. The iter-
ation procedure runs over the whole sequence for twice (including
the pure training phase). It is observed that in comparison with the
MMSE equalizer, the semi-blind approach suffers a 4dB loss at a
BER 10−3. However, the difference between the Jakes’ channel
and the FIR-BEM channel is much less pronouncing with respect to
the previous case. This difference, though still existing, should be
accounted by FIR-BEM structure of the equalizer, which is hence
optimal for a similar-structured channel.
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Figure 4: Semi-blind equalization performance

Test case 3. If we set the parameter Q′ and Q′′ in (6) both to
zero, the proposed equalizer degrades to a conventional DFE, which
is frequently used for time-invariant channels. Fig. 5 illustrates that
the conventional DFE (both the MMSE and semi-blind solution as
well) is incapable of capturing the time-variation of the channel.

6. CONCLUSION

In this paper, we construct a DFE for a time-varying channel, with
its feedforward and feedback part both taking on an FIR-BEM
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Figure 5: Performance of a conventional DFE

structure. We show how to acquire the value of the equalizer taps by
means of semi-blind RLS adaptation. With the assistance of pilots,
this approach is cast to test for both practical (Jakes’ channel) and
ideal (FIR-BEM channel) situations and yields satisfactory perfor-
mance.
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