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ABSTRACT

In this work we consider the linear and quadratic fusion of
a set of n-dimensional images that contain a signal of loca-
lized compact sources embedded in a background. We aim
to produce a single image that amplifies the signal and mini-
mizes the noise. Moreover, we compare two methods to de-
compose the images into subimages by means of multiscale
wavelet analysis. We use the Mexican hat wavelet family
(MHWF), a family obtained applying iteratively the Lapla-
cian to the standard Mexican hat wavelet (MHW). The first
method uses this family as a filter (FM), operating at different
scales. The second is a pyramidal method called the undeci-
mated multiscale method (UMM). As application we con-
sider the detection of galaxies in Cosmic Microwave Back-
ground radiation maps for the case of ESA’s 44GHz Planck
satellite channel using a standard linear detector. Assuming
a 5s detection method, the linear and quadratic fusion tech-
niques, together with the UMM or the FM, will improve the
number of detected sources ≈ 45%(100%) as compared with
the standard MHW at the optimal scale, allowing a 5%(10%)
of false alarms in the total number of detections.

1. INTRODUCTION

The detection of point sources (PS) in images of the sky is
one of the most challenging aspects of modern Astronomy.
For example, at microwave wavelengths we observe the Cos-
mic Microwave Background (CMB), a fossil radiation com-
ing from the early Universe, and, superimposed on it, several
foreground emissions due to both Galactic and extragalactic
processes. Among the extragalactic foregrounds, the most
important is made up of far galaxies that, due to their small
angular size (much smaller than the detector’s angular res-
olution), appear as pointlike objects (hence the term point
sources) convolved with the detector beam. Usually, the de-
tector beam has a Gaussian shape, so the PS appear as small
Gaussian-shaped spots embedded in the CMB and the rest of
the foregrounds.

Since extragalactic PS in CMB images are very faint,
their detection is often a difficult task. Several techniques
have been proposed so far in the literature that are oriented
to facilitate PS detection. Wavelets, for example, are well
suited to the problem because of their scaling properties, that
can be used to isolate and enhance features with a given char-
acteristic scale (as is the case of PS) while keeping the infor-
mation about their position. The Mexican hat wavelet has
been successfully applied to CMB experiments in order to
enhance the contrast between PS and the CMB and the other
foregrounds [1].

Another interesting possibility appears when several dif-

ferent images containing the same PS are available, for exam-
ple if we have images of a region of the sky taken at different
wavelengths. Then it is possible to perform a fusion [2],[3]
of the images into a single image where the PS are enhanced
with respect to the other emissions. There are different ways
to combine the images: pixel level [4], block level [5] and
image decomposition [6],[7]. The combination can be linear
or non-linear [8].

Image fusion is usually applied to multiple detector prob-
lems (such as the case of the sky observed at different wave-
lengths). Sometimes, however, it may be interesting to study
the case where a single image is decomposed into several
subimages and then those subimages are fused to obtain a
new image where the PS are easier to detect. For instance, let
us consider the case of an image decomposed with wavelets.
This decomposition can be done with a multiscale method
or just by filtering the image with the wavelets at a number
of different scales. Then, the wavelet coefficients of each
subimage will contain different information about the origi-
nal image. For example, in a pyramidal multiscale decompo-
sition each subimage will contain information about a given
scale in the original image. Instead of a perfect reconstruc-
tion of the image, one can aim at reconstructing as much
as possible the PS, but not the other components. Thus, a
decomposition-plus-fusion scheme can be used to first iden-
tify the different elements that are present in the image and
then select among them those that optimize the detection
of the PS. In this work we will explore two decomposition
schemes based on the Mexican hat wavelet family (MHWF)
[9] followed by a subsequent fusion in order to optimize the
detection of PS. Both linear and quadratic fusion will be con-
sidered.

The overview of this work is as follows: in section 2 we
describe the method for combining a set of n-dimensional
images using a linear and a quadratic approach. In section 3
we present a scheme to produce the subimages needed for
the fusion, the MHWF used as a filter and the undecimated
multiscale method. In section 4 we apply these techniques to
the interesting case of detecting PS embedded in color noise
for the realistic case of CMB maps. Finally, in section 5 we
summarise our results.

2. LINEAR AND QUADRATIC FUSION

Let di(~x) be N images in n-dimensional space (i = 1, . . . ,N,
~x ∈ ´n). Consider that these images are the superposition
of a signal si(~x) and noise ni(~x). We will assume that the
signal is a set of PS characterised by their amplitude A and
profile t i(~x− ~xa), where ~xa is the position of the source and
the sources have a small contribution to the total power of the



image. The background ni(~x) is modeled by random fields
with the following properties at any point~x

〈ni〉 = 0, 〈nin j〉 = Ci j = C ji, (1)

〈nin jnk〉 = 0, 〈nin jnknl〉 = Ci jCkl +CikC jl +CilC jk, (2)

where 〈〉 means mean value either on the image or in the
sense of realizations of the field.

Let us focus on a concrete compact source at the origin
(~xa =~0) being represented by

si(~x) = At i(~x), t i(~0) ≡ t i, (3)

where A is the amplitude and t the profile.

2.1 Linear Fusion

In this case, we only need to assume the condition given by
equation (1) that involves the mean value and the correlation
between the images at the same point for the noise. We define
the linear fusion dL of the N images as the linear superposi-
tion

dL(~x) = å
i

aidi(~x), (4)

where ai are constants.
Now, we are going to express the conditions to obtain a

combination such that
a) 〈dL(~0)〉 = A, i. e. dL(~0) is an unbiased estimator of the

amplitude of the source,
b) The variance of dL has a minimum, i. e. it is an efficient

estimator.
With these conditions the problem is reduced to the mini-
mization of s 2

L with respect to ai, subject to a constraint
(ait i = 1). Therefore, we get the best signal to noise ratio
of the sources that is attainable with a linear combination of
the images.

The solution for the linear fusion field dL can be written
in a matrix form as

dL = at d, a ≡
C−1t

ttC−1t
, (5)

where we have introduced the column vectors a ≡ (ai) and
t ≡ (t i) (t t is the transpose matrix) and the symmetric matrix
C ≡ (Ci j), C = Ct .

2.2 Quadratic Fusion

In this case we need to assume the conditions given by equa-
tions (1) and (2) that involve the mean value and the correla-
tions, up to 4th-order, between the images at the same point
for the noise. We define the quadratic fusion dQ of the N
images as the linear plus quadratic superposition

dQ(~x) = å
i

aidi(~x)+å
i, j

bi jdi(~x)d j(~x), (6)

where ai,bi j are constants. The conditions to obtain a com-
bination that optimizes the detection of the source in an ana-
logous way as in the case of linear fusion are

a) 〈dQ(~0)〉 = aA + eA2, i. e. dQ(~0) is a quadratic estima-
tor of the amplitude of the source (a and e are two free
parameters),

b) The variance of dQ has a minimum, i. e. it is an efficient
estimator.
Therefore, the problem is reduced to the parameter min-

imization (with respect to ai and bi j) of s 2
Q with two con-

straints (ait i = a and bi jt it j = e). The result for the fusion
field dQ can be written in a matrix form as

dQ = at d +dtbd = a pt d + e(ptd)2, p ≡
C−1t

ttC−1t
, (7)

and, necessarily, the quadratic term must be proportional to
the square of the linear one. Thus, the quadratic fusion is
easy to implement by performing the linear combination dL
and adding a term that is proportional to the square of dL,
dQ = dL + ed2

L (we can always take a = 1 if the linear term
is present).

3. MEXICAN HAT WAVELET FAMILY (MHWF)

Let us consider wavelets in ´n, then the decomposition of a
function on this basis incorporates the local and scaling be-
haviour of such a function. Therefore, the continuous trans-
form involves translations and dilations

Y(~x;~b,R) ≡
1

Rn y

(

|~x−~b|
R

)

, (8)

where y is the mother wavelet, R is the dilation scale and
~b is the translation. We also assume that y is spherically-
symmetric. Then, the wavelet coefficient is defined as

w(~b,R) =

∫

d~x f (~x)Y(~x;~b,R), (9)

w(~b,R) =

∫

d~qe−i~q~b f (~q)y(qR), q ≡ |~q|, (10)

in real and Fourier space, respectively.
We are interested in the problem of point source detection

in the context of astronomical images. These objects appear
as points in the sky at microwave frequencies, although in the
images they are convolved with the beam of the instrument
used for the observation. This beam can be approximated
by a Gaussian and therefore we will concentrate on Gaussian
profiles for our sources.

3.1 MHWF as a filter (FM)

The MHW is defined to be proportional to the Laplacian
of the Gaussian function. If we apply the Laplacian to the
MHW we obtain a new wavelet, and if we further apply this
operator the result is a family that we call MHWF. In two
dimensions, this family can be written as

ym(x) =
(−1)m

2mm!
Dmj(x), x ≡ |~x|, (11)

ym(q) =
1

2mm!
qme−

q2
2 , q ≡ |~q|, (12)

in real and Fourier space, respectively. Note that j is
the two-dimensional Gaussian and y1 corresponds to the
standard MHW. Taking into account equation (10) and the
Gaussian profile of the source in Fourier space t(q) =
g2 exp(−(qg)2/2), the expression of the wavelet coefficient



for a Gaussian source filtered with the MHWF at the order m
and at the scale R is

wm

T0
=

y2

(1+ y2)1+m , y ≡
R
g
, (13)

where T0 is the amplitude of the source and g is the beam
width (i.e. the width of the profile).

This family allows to decompose an image into subim-
ages simply by applying the wavelets given by equation (11)
at the order m and scale R on the image. Note that R can take
any real value (not only integer numbers). The filter scale R
can be optimized in order to obtain the maximum enhance-
ment of the PS with respect to the background [1]. Therefore,
we are using a filtering method (FM).

3.2 MHWF & Undecimated Multiscale Method (UMM)

We can generalize the MHW on the plane and obtain three
isotropic filters for which the distance is the natural scale
variable to be dilated at any point [9]. The first two filters,
yvh and yd , are given by the first and second order Lapla-
cian of the Gaussian filter, the usual MHW and the “diagonal
Mexican hat wavelet” (DMHW). The third one, yc, is called
the “complementary Mexican hat wavelet” (CMHW) and is
such that we have a perfect reconstruction of any function in
´2 at any scale using the Gaussian filter as scaling function.
Note that the MHW and the DMHW have different normal-
izations compared with the wavelets from the previous sub-
section. In this way, we introduce a non-orthogonal, over-
complete basis. These functions are given in polar coordi-
nates (x,q ) for any fixed and arbitrary point on ´2 by

j(x) = e−
x2
2 , yvh(x) =

(

1−
x2

2

)

j(x),

yd(x) =

(

1−
x2

2
+

x4

8

)

j(x),

yc(x) = d (~x)−

(

3−
3x2

2
+

x4

8

)

j(x),

where d (~x) is the 2D Dirac distribution. Their Fourier trans-
forms are

f(q) = e−
q2
2 , yvh(q) =

q2

2
e−

q2
2 , (14)

yd(q) =
q4

8
e−

q2
2 ,

yc(q) = 1−
(

1+
q2

2
+

q4

8

)

e−
q2
2 ,

The CMHW allows any function to be exaclty reconstructed
and is defined as d − (Gaussian+MHW +DMHW ), where
d is the Dirac distribution.

The UMM [10] is a pyramidal method that allows one to
decompose any image f (~q) at any scale (multiscale analysis),
using the analysing wavelets yvh, yd and yc. In particular,
for a pixelized image with pixel size lp, we filter the image
at this scale R1 = lp and the image is decomposed, in Fourier
space, as follows

f (~q) = wvh(R1)+wd(R1)+wc(R1)+ws(R1),

wvh(R1) = yvh(qR1) f (~q), wd(R1) = yd(qR1) f (~q),

wc(R1) = yc(qR1) f (~q), ws(R1) = j(qR1) f (~q),

Table 1: MHWF used as a filter (FM) and 5s detector. Ndet
denotes the average number of real detections, N f the average
number of false alarms, r ≡ 100×N f/(Ndet +N f ).

e 0 2500 5500 9750
Ndet 6.26 7.42 8.85 10.90
N f 0.06 0.18 0.60 2.35

r(%) 0.95 2.37 6.34 17.70

where ws(R1) is the approximation image. Note that for sim-
plicity we do not write explicitly the dependence of w on q.
Then we apply the wavelet family at the scale R2 = 2lp to the
approximation image ws(R1), and continue the scheme until
the scale Rn. Therefore, the image f (~q) can be analysed and
decomposed in different scales nlp

f (~q) = å
i
[wvh(Ri)+wd(Ri)+wc(Ri)]+ws(Rn) (15)

The UMM has two very interesting characteristics: i) it is
a multiscale approach that allows one to study different reso-
lution levels of the image, preserving the number of pixels at
any level, ii) the family of wavelets is isotropic. Hereinafter,
we will assume that the pixel size is lp = 1.

4. APPLICATION: DETECTION OF POINT
SOURCES

The aim of this work is to improve the detection of PS. We
generate 500 realistic simulations with the specifications of
the 44 GHz channel of ESA’s Planck satellite. The images
are 128x128 pixels in size (6 arcmin/pixel) and contain the
so-called Cosmic Microwave Background radiation, PS dis-
tributed spatially following a Poisson distribution and with
intensity according to [11] and a number of diffuse emissions
from our galaxy. These components are convolved with the
response of the instrument, that can be modeled by a Gaus-
sian beam of FWHM=24 arcmin. In addition, we add instru-
mental noise. Note that the average signal-to-noise is ≈ 2.3.

We compare the two methods of decomposing an image
into subimages. On the one hand, the MHWF used as a filter,
and on the other, the UMM. In both cases we use the linear
and quadratic techniques from section 2 to fuse the subim-
ages and then look for sources above the 5s threshold. In
addition, we compare the results with those obtained filter-
ing the original image with the standard MHW at the optimal
scale (MHWopt), a standard tool for detecting PS in astron-
omy [1]. In Table 1 we present the average number of real
detections (Ndet ), false alarms (N f ) and ratio (r) for the FM
case when detecting directly at the 5s threshold on the qua-
dratic combination. Note that e = 0 corresponds to the linear
case. We have used as filters the three first members of the
MHWF, obtained using eq. (11) with m = [1,2,3]. For each
filter, we determined the optimal scale R that gives the maxi-
mum enhancement of the PS: R = 1.20, 1.86 and 2.35 pixels,
for m = 1, 2 and 3, respectively. We have explored differ-
ent values of e such that the number of false alarms can be
compared with those obtained for the MHWopt for different
thresholds. In Table 2 we present Ndet , N f and r for the UMM
in an analogous way as in Table 1. In Table 3 we show Ndet ,
N f and r for the MHWopt at different s levels. First, we re-
mark that the average number of detected sources above 5s



Table 2: MHWF used with the undecimated multiscale
method (UMM) and 5s detector.

e 0 2500 5500 9750
Ndet 6.27 7.45 8.87 11.00
N f 0.05 0.17 0.60 2.47

r(%) 0.79 2.23 6.33 18.30

Table 3: MHW used as a filter at the optimal scale R=1.2.
s 5.0 4.5 4.0 3.7 3.3

Ndet 4.77 5.70 7.00 7.98 9.77
N f 0.004 0.02 0.18 0.60 2.38

r(%) 0.08 0.35 2.50 6.99 19.61

in the original image is ' 1, as compared with ' 4.8 obtained
with the standard MHW at the optimal scale (R = 1.2). This
shows the importance of using filters to enhance the signal
and reduce the noise, and for this particular case, to remove
the diffuse components efficiently.

The number of false alarms above 5s for the MHWopt
case is very low. In order to compare with the quadratic
cases, we fix N f for different values of e and lower the thresh-
old for the MHWopt until we obtain similar numbers of N f .
Then we compare the number of real detections Ndet . For
values of e of the order 2500, we detect ' 5% more sources
than with the MHWopt (4s threshold). For higher values of
e (4000-10000) there are ' 10% more detections than with
the MHWopt (3.3s threshold).

We remark that if we are interested in detecting a large
number of real sources above 5s , and we allow a 10% of
false detections, both methods yield twice as many detections
as the MHWopt. Furthermore, we compare the two methods
for decomposing images, FM and the UMM. We find that for
the considered values of e , we obtain a similar result with
both methods, although the UMM seems to give a few more
real detections and slightly lower ratios than the FM.

5. CONCLUSIONS

The aim of this paper is two-fold. First, we have presented
a new method that combines images that contain localized
sources in such a way that the output image has minimum
variance and the image fusion gives at the position of the
source an unbiased estimator of the amplitude. We studied
the linear and quadratic fusion approach. Second, we have
compared the two methods between them and the standard
MHW at the optimal scale.

We have tested these ideas for realistic simulations of
the 44 GHz channel of ESA’s Planck satellite. We have de-
composed each of the simulations using the MHWF as a fil-
ter (FM) and the undecimated multiscale method (UMM).
We have then fused the linear and quadratic corresponding
subimages and applied a 5s threshold to detect PS. Then we
have compared the average number of true detections and
false alarms for the linear and quadratic case with those ob-
tained with the Mexican hat wavelet at the optimal scale.

When comparing the MHWopt with the linear fusion and
quadratic fusion, if we fix the number of false alarms (0.6-
2.5), and lower the detection threshold for the MHWopt, we
see that the UMM and the FM methods detect ∼ 10% more

real sources than the MHWopt. If we instead fix the detection
threshold to 5s and we allow up to ∼ 10% of false alarms,
the improvement for high values of e is of the order 100%.

When we compare the two methods for decomposing the
images, both yield similar numbers of detected sources and
false alarms, although the UMM seems to give slightly better
results. We remark that the parameter e can be easily opti-
mized from the simulations. In future works we plan to apply
these techniques to other backgrounds, such as those found
in higher frequency channels in the Planck satellite.
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