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ABSTRACT

Lossless video compression is a novel research area, but it
is gaining widespread importance. As an example, in digital
cinema the post-production chain requires all the information
captured by digital cameras, and any data loss is not toler-
ated. On the other hand, the camera sensors size is expected
to grow up to 4k × 2k pixels at 10 bit per pixel per com-
ponent, and cameras output frame-rate up to 150 fps. This
enourmous amount of data asks for efficient lossless com-
pression techniques.

In this paper we propose a novel compression algorithm
based on an optimal predictor which exploits the tempo-
ral correlation. This solution provides an improvement of
the compression ratio, but the resulting algorithm is compu-
tationally demanding. An alternative method reducing the
overall complexity is presented.

1. INTRODUCTION

Lossless compression algorithms can be divided in two ma-
jor categories: prediction based coding and transform based
coding.

In prediction coding, the pixels of the image are predicted
using the spatial correlation, and the residual image (or pre-
diction error image) is entropy coded. If the predictor is ac-
curately designed, the residual image entropy is lower than
the original image entropy, and consequently, the compres-
sion ratio improves.

Transform coding applies a reversible transformation to
the image. The resulting image is divided into four or more
sub-bands. The sub-band located at the lower frequencies
contains most of the signal energy, while the others, at higher
frequencies, include a small part of image energy. This kind
of coding is tipically used when working in lossy-to-lossless
mode, as in JPEG2000.

The proposed scheme includes the temporal information
in the predictor equations. As a result, the predictor can es-
timate the existing correlation between spatial and temporal
adjacent pixels, and if a scene change occours it does not
keep into account the pixels belonging to the previous frame,
because the two consecutive frame are loosely correlated.

Moreover, the spectral prediction correction introduced
in [1] was successfully used in order to improve the perfor-
mance.

The paper is structured as follows: Section 2 presents
the GLICBAWLS algorithm which is our starting coding
scheme. In Section 3 we present the proposed algorithm and
its simplified version. In Section 4 we compare the proposed
algorithms with respect to WLOPT-3D algorithm [2, 3] and
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the lossless standard coder JPEG-LS [4]. Finally, in Sec-
tion 5 we report the conclusions.

2. THE GLICBAWLS ALGORITHM

GLICBAWLS is an acronym for Grey Level Image Compres-
sion By Adaptive Weighted Least Squares. It is a prediction
based coder introduced by Meyer and Tischer in [5].
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Figure 1: Pixel notation used by the proposed algorithms in
the current frame.

Glicbawls constructs the adaptive optimal linear predic-
tor of the current pixel at position (xC,yC) using the six
neighbor causal pixels with Manhattan distance lower than or
equal to two (in the following referred to as P6), see Fig. 1.
New weights are calculated for each pixel of the image, tak-
ing into account pixels already coded.

Given the matrix Ai = pi pT
i of pixel i, where pi =

[pi−1, . . . , pi−6]
T according to Fig. 1 notation, and vector

bi = pipi, for each component R, G or B we update the au-
tocorrelation matrix as

AC =
N

∑
i=1

0.8|xC−xi|+|yC−yi|Ai (1)

and the vector

bC =
N

∑
i=1

0.8|xC−xi|+|yC−yi|bi (2)

where the weight 0.8|xC−xi|+|yC−yi| is used to decrease the
influence of the farthest pixels from the current position
(xC,yC). In equations (1) and (2), N is the number of previ-
ously coded pixels. The prediction coefficients wi are adap-
tively computed solving the linear system

ACw = bC. (3)



Therefore, the predicted pixel p̂i is computed according to

p̂i =
6

∑
k=1

wk pi−k (4)

where pi−k is the R,G or B value of the (i−k)-th pixel in the
P6 set.

Glicbawls scheme is quite different with respect to the
others prediction based algorithm. In fact, it does not code
the residual image, but it uses the prediction errors to esti-
mate the variance of a modified Student distribution. The
actual value is then coded in a bit-plane mode using a binary
arithmetic coder starting from the MSB (More Significant
Bit) down to the LSB (Least Significant Bit). The “zero”
probability is calculated by integrating the modified Student
distribution centered on the predicted pixel value [5].

Since each frame is extended to a constant value outside
the image boundaries, the decoder can replicate the coder
operations without requiring that the predictor coefficients
are sent as side-information.

This algorithm is computational demanding for two rea-
sons: firstly, the optimal predictor is obtained inverting a
6× 6 matrix for each pixel and for each colour band; sec-
ondly, the “zero” probability computation, using the esti-
mated modified Student distribution, is not a trivial operation
because it requires the numerical computation of an integral.

3. SCALAR PREDICTION USING TEMPORAL
CORRELATION

The algorithm proposed in Section 2 uses only the spatial
correlation and it is effective in still image coding. However,
for video sequences the temporal correlation is very useful to
increase the compression ratio, because consecutive frames
are usually highly correlated. However, temporal correlation
is useless when scene changes accour. In this case, all the
algorithms based upon motion estimation are not efficient,
because the estimated motion vectors estabilish an erroneous
relationship between two indipendent frames. In literature
many researchers proposed several algorithms to prevent the
compression ratio reduction due the scene changes, but they
usually have high computational cost and are used to switch
from inter-frame coding to intra-frame coding.

In our work we aim at developing a new compression
technique which is not only able to exploit the temporal
correlation between adjacent frames, but also it is roboust
against possible scene changes.

To this purpose, we introduce the temporal information
inside the spatial optimal predictor presented in Section 2 by
including in the predictor the pixels of the previous frame
inside a 3× 3 matrix centered at the same position of the
predicted pixel.

3.1 Original version

Consider the vector pi defined in Section 2. It contains the
spatial causal pixels near to the current one. The temporal
correlation is introduced by adding to pi the nine pixels be-
longing to the 3×3 block (according to the notation of Fig. 2)
of the previous frame centered at the same position of the
predicted pixel

pi = [pi−1 · · · pi−6 | pi−7 · · · pi−15]
T

(5)
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Figure 2: Pixel notation using by the LPOSTC and the
LPOSTC-RGPC algorithms in the previous frame.

where the first six components contain the current frame
pixel values, and the last nine components contain the previ-
ous frame pixel values. The resulting autocorrelation matrix
update, Ai, for a given colour band

Ai = pip
T
i =

[

Ai,11 Ai,12

Ai,21 Ai,22

]

(6)

is a block diagonal symmetric matrix, where the four blocks
Ai,·· have the following meanings:
Ai,11 reflects the 6 × 6 spatial correlation for the current
frame

Ai,11 =
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; (7)

Ai,22 reflects the 9× 9 spatial correlation for the previous
frame

Ai,22 =
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Ai,12 and Ai,21 reflect both spatial and temporal correlation
between adjacent frame pixels
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(9)
We solve three linear systems, one for each colour band,

AC,bwb = bC,b (10)

and the resulting prediction coefficients are used to compute
the predictions

p̂i,b =
15

∑
k=1

wk,b pi−k,b (11)

where b = {R,G,B}. The residual images are bit-plane coded
using a binary arithmetic coder.

We call this algorithm Linear Prediction Over Spatial
Temporal Correlation (LPOSTC).



3.2 Low computational cost version

In order to simplify the proposed algorithm, we decided to
reuse the prediction coefficients calculated for the green band
in the prediction used for the red and for the blue bands.
Therefore, the solution of the system for the green band

AC,GwG = bC,G

provides the prediction coefficients for the three equations

p̂i,R =
15

∑
k=1

wk,G pi−k,R

p̂i,G =
15

∑
k=1

wk,G pi−k,G

p̂i,B =
15

∑
k=1

wk,G pi−k,B .

(12)

In this way, we reduce three times the prediction computa-
tional cost of the original algorithm, but we have an optimal
prediction only for the green band. For the red and the blue
bands we only obtain a sub-optimal prediction. This assump-
tion works considering that the three bands have the same be-
haviour and the same correlation between spatial and tempo-
ral neighbour pixels. We call this algorithm Linear Prediction
Over Spatial Temporal Correlation Reusing Green Prediction
Coefficients (LPOSTC-RGPC).

3.3 On the use of motion estimation

Motion estimation is based on the idea that a block in the
current frame could be matched with a neighbour block in the
previous frame. The motion compensation algorithm selects
the block which minimizes the MSE (Mean Square Error)
between the current frame block and all possible blocks in
a given searching area of the previous frame. The motion
vector is defined as the position offset between the position
of the block in the current frame and the position of its best
match in the previous frame. Motion compensation is used
in lossy coding of video sequences (i.e. MPEG-2 or H.264),
and many researchers have suggested new low complexity
methods to calculate the motion vectors. However, motion
estimation have some intrinsic problems:

• when a scene change occours the founded matches give
erroneous information;

• it is not able to exploit complex movements (i.e. zoom,
rotations, or fast motion);

• the coder must save the motion vectors as side informa-
tion. Consequently, the block size could not be too small,
because a lot of motion vectors have to be estimated and
saved. On the other hand, the block size could not be too
large otherwise the motion vector is the average of all the
movements belonging to a block.

The presented algorithm addresses these problems, but it
does not fully exploit temporal correlation in fast motion se-
quences. In fact, the 3× 3 block in the previous frame is
only able to exploit small movement (less than or equal to 1
pixel), but it is a good compromise between efficiency and
computational cost. If we use a 5× 5 block we could ex-
ploit larger movement (less than or equal to 2 pixels), but we
have to manage a 31st-order predictor and, consequently, a
31×31 matrix has to be inverted for each prediction. Using

the Cholesky factorization the computational cost of this op-
eration is O(313/6), and it is 9 times greater with respect to
the proposed solution which uses a 3×3 block.

4. RESULTS

The proposed algorithms are tested using several 8 bpp R, G
and B colour sequences. The results are calculated as the av-
erage of the first ten frames (from frame 2 to frame 11) and
reported in bit per pixel per component [bpppc]. The first
frame is not considered because it is coded in intra-mode.
In literature there are only a few papers on lossless video
compression, so our comparisons are restricted to the lossless
compression standard for still images (JPEG-LS [4]), and the
WLOPT-3D algorithm which is based upon an optimal pre-
diction which uses motion compensation [2].

Sequence LPOSTC P6
Corrected Corrected

Susie 3.50 3.25 4.02 3.60
Football 4.65 4.29 5.24 5.03
Claire 2.15 2.23 2.46 2.39
Missa 3.46 3.48 3.81 3.75
Mobile 4.68 4.21 5.33 4.81
Tennis 4.67 3.52 5.43 4.08
Renata 4.26 3.22 5.17 3.65
Calendar 4.49 3.92 5.35 4.26
Flowers 4.16 3.63 4.42 3.73
Average 4.00 3.52 4.57 3.92

Table 1: Comparison of the proposed LPOSTC and P6 algo-
rithms [bpppc].

Table 1 reports the first comparison between the pure
spatial predictor (P6) and the spatio-temporal predictor
(LPOSTC) without or with (column “Corrected”) the spec-
tral correction presented in [1]. The difference between these
two algorithms is given by the temporal information inside
the predictor. The compression of the LPOSTC algorithm is
greater (on average) of 0.57 bpppc than the compression of
the P6 algorithm for the version that does not use spectral
correction, and of 0.40 bpppc for the spectral corrected ver-
sion. For the last four sequences the P6 spectral corrected
algorithm works better than the LPOSTC without any spec-
tral correction. In these sequences there is a lot of movement
and high frequency so the 3× 3 block in the previous frame
is too small to fully exploit the temporal correlation.

Sequence LPOSTC LPOSTC-RGPC
Corrected Corrected

Susie 3.50 3.25 3.50 3.25
Football 4.65 4.29 4.67 4.30
Claire 2.15 2.23 2.30 2.32
Missa 3.46 3.48 3.71 3.73
Mobile 4.68 4.21 4.75 4.16
Tennis 4.67 3.52 4.76 3.74
Renata 4.26 3.22 4.35 3.48
Calendar 4.49 3.92 4.67 4.22
Flowers 4.16 3.63 4.48 3.97
Average 4.00 3.52 4.13 3.68

Table 2: Comparison of the LPOSTC and the LPOSTC-
RGPC algorithms [bpppc].

In Table 2 we compare the original version LPOSTC and



its simplified version LPOSTC-RGPC. For some sequences
the simplified version achieved the same compression gain
of the LPOSTC algorithms. However, on the average, we
lose about 0.14 bpppc, but the predictor computation of the
reduced complexity algorithm is three time faster than the
original algorithms. Using the Cholesky factorization the
complexity for the former algorithm is O(153/6) and for the

latter algorithm is O(3×153/6).

Sequence LPOSTC LPOSTC- WLOPT-3D
RGPC

Corr. Corr. Corr.

Tennis 4.67 3.52 4.76 3.74 4.95 4.38
Renata 4.26 3.22 4.35 3.48 4.61 4.12
Calendar 4.49 3.92 4.67 4.22 4.75 4.52
Flowers 4.16 3.63 4.48 3.97 4.60 4.32
Average 4.00 3.52 4.57 3.85 4.73 4.34

Table 3: Comparison of the proposed LPOSTC, LPOSTC-
RGPC and the WLOPT-3D algorithms [bpppc].

Table 3 reports the comparison between the proposed al-
gorithms with respect to WLOPT-3D [2, 3].

The first operation of the WLOPT-3D scheme is mo-
tion compensation, where each motion vector relative to each
block is determined by an absolute difference minimization.
Then, it predicts each pixel using a weighted linear combi-
nation of pixels in the current and previous frames, by taking
into account motion information. Finally, a context-based
Golomb-Rice coder is applied to the residual image. To re-
duce its complexity, the authors proposed to calculate the
optimal prediction coefficients only if the prediction error is
greater than a fixed threshold. However, this solution intro-
duces a compression ratio loss, and the resulting algorithm
has an image-dependent complexity.

The proposed algorithms perform better than WLOPT-
3D up to 0.82 bpppc (comparing the spectral corrected re-
sults), and the gain achieved by the reduced-complexity al-
gorithm (LPOSTC-RGPC) is about 0.5 bpppc. Moreover,
the computational cost of the LPOSTC-RGPC algorithm is
smaller with respect to the WLOPT-3D algorithm.

Sequence LPOSTC LPOSTC- JPEG-LS
RGPC

Corr. Corr.

Tennis 4.67 3.52 4.76 3.74 5.78
Renata 4.26 3.22 4.35 3.48 5.41
Calendar 4.49 3.92 4.67 4.22 5.32
Flowers 4.16 3.63 4.48 3.97 4.95
Average 4.00 3.52 4.57 3.85 5.36

Table 4: Comparison of the proposed LPOSTC, LPOSTC-
RGPC and the JPEG-LS algorithms [bpppc].

Algorithm \ Frame 53 54 55

P6 3.48 3.63 3.63
LPOSTC 3.04 3.67 3.09

Table 5: Behaviour of the LPOSTC algorithm when a scene
changes occours [bpppc].

In Table 4 we compare the results obtained with respect
to JPEG-LS. The proposed algorithms achieve better com-

pression ratio, but JPEG-LS is a still image coder, so it is not
able to exploit the temporal information. Moreover, we ap-
ply a spectral prediction error correction which introduces an
improvement of about 0.5 bpppc, while JPEG-LS codes the
three colour components, independently.

Finally, in Table 5 we report the behaviour of the
LPOSTC algorithm when a scene change occours. In fact,

the sequence Tennis has a scene change between the 53rd

and the 54th frames. Coding the 53rd frame the LPOSTC
algorithm achieves a better compression ratio than the P6

algorithm, because it exploits the 52nd temporal correlated
frame. When the scene change occours, the LPOSTC al-
gorithm uses, during the prediction, two loosely correlated
frames and its performance is close to the P6 performance

(only 0.04 bpppc difference). After that, the 54th and the

55th frames are temporally correlated and the LPOSTC algo-
rithms well exploits this additional information. In this way,
we proved the roboustness of the proposed algorithm against
the actual problem of the scene changes.

5. CONCLUSIONS

In this paper we presented a new way to exploit the tem-
poral correlation inside an adaptive optimal linear predictor.
This novel idea tries to solve the problems introduced by mo-
tion estimation and compensation. Moreover, the proposed
scheme does not need additional techniques to detect pos-
sible scene changes in order to switch from inter-frame to
intra-frame coding.

The presented algorithms exploit both spatial and tem-
poral correlation inside an optimal predictor. This solution
gives a good compression ratio and it is roboust against the
scene changes problem.

The reduced-complexity proposed algorithm is three
times faster (if we only consider the predictor computation
time) than the original one, and its results are only slightly
worse than those of the original version. However, it gives a
good trade-off between low computational load and achiev-
able compression ratio.
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