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‘We formulate the phase vocoder — an audio synthesis method
very closely related to inverse short time Fourier Transform
synthesis — as a Gaussian state space model and demonstrate
simulation results on interpolation of missing values. The au-
dio signal is modelled as a superposition of quasi-sinusoidal
signals generated by a linear dynamical system. The advan-
tage of our “generative” perspective is that it allows a full
Bayesian treatment of the problem; e.g. one can perform the
analysis while arbitrary chunks of sample values are miss-
ing or model parameters are unknown. To perform audio
restoration, we derive an expectation-maximisation (EM) al-
gorithm that infers the expectations of missing samples and
maximum a-posteriori model parameters. We demonstrate
the validity of our approach on a set of challenging real audio
examples and compare to existing methods.
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Entire blocks of audio data can get lost during transmission
over a noisy channel or during storage on physically degrad-
ing media such as magnetic tapes. In contrast to denoising
applications, in this scenario the actual observed value of a
corrupted sample is assumed to be completely independent
from the original value, hence we assume that the corrupted
samples are missing. The missing value interpolation prob-
lem is restoration of such distorted audio material when the
indices of corrupted samples are known [1, 2, 3]. Let us de-
note the “clean” samples by x,, and missing samples by = .
The missing value interpolation problem can be stated as the
following generic Bayesian inference problem:

P(E-nln) o / AP [H)p(zaH)p(H) (1)

Here, H = (©,S) denotes the collection of unknown model
parameters © and other unobserved latent state variables S
that describe the sound generation mechanism p(xo.x—1, H)
where zo.x—1 = Zx U z-x. The model structure in (1) is
somewhat restricted since it assumes that both z-,. and z.
share the same hidden cause and are independent otherwise.
On the other hand, for most audio signals such as music
or speech, it is realistic to assume that the same dynamical
physical mechanism governs generation of both missing and
observed samples.

In this paper, we will first describe a generic probabilistic
generative model p(z|H)p(H) for audio signals. Our model
is closely related to the phase vocoder of [4]. Subsequently,
we will describe inference methods and present results on
real audio examples.
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The phase vocoder (PVOC) is a well known tool for time
scaling and pitch shifting of speech and music via modifi-
cation of original short-time Fourier transform (STFT) co-
efficients. Interestingly, the first formulation of PVOC [4]
was aimed primarily at a different application: low bit rate
speech coding — hence the name “voice coder”. The algo-
rithm exploits the fact that most natural audio signals con-
tain resonances that can be described by simple sinusoidal
oscillations. The time varying amplitudes and phase shifts of
these resonances are estimated via the STFT. For coding, the
amplitudes and phases are quantised and sent over a channel
to the decoder. Alternatively, to synthesise a time stretched
version of the original [5], new STFT coefficients are created
that have the same amplitudes as the original transform but
with adjusted phases such that individual oscillations in each
frequency band “last for more cycles”. Several improvements
and extensions were proposed over last decades to cope with
some perceptual artifacts, e.g. see [6].

In our view, one conceptual problem with the original
formulation of PVOC and later extensions is that they de-
scribe merely an encoding or time stretching algorithm and
do not explicitly refer to the underlying signal model. It
is fairly clear that the performance of the PVOC algorithm
hinges critically upon the fact that the characteristics of the
analysed signal are well matched by a sinusoidal model. In
our view, explicitly stating the signal model can help in fix-
ing the problems in a principled way, and, as we wish to
demonstrate in this paper, to extend the basic model to sce-
narios where it is not at all obvious how to apply the original
algorithm.

In the next section, we will describe the inverse dis-
crete Fourier transform (DFT) as a dynamic generative pro-
cess. This starting point will be useful later to describe the
probabilistic phase vocoder model: an adaptive model di-
rectly applicable to spectral analysis and restoration of non-
stationary signals.
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Consider a sequence x = (Zo,Z1,-..,Tk;--- mK,1)T with
time index kK = 0,..., K — 1. Here, x; are complex num-
bers and T denotes non-conjugate transpose. The Fourier
transform s = (s%,s',...,5",...s" 17T with the frequency
index v =0,...,W — 1 is given by

s = Fx
where F = {F¥} is the DFT matrix defined by entries'

k —2mjvk/K
FF = vk

This mapping between “time domain” and “frequency do-
main” is invertible when the transform matrix is square, i.e.

1We omit irrelevant scaling factors.



W = K. In this case, one can compute the inverse DFT to
reconstruct the original signal

Ffs (2)
Here, H denotes the Hermitian transpose, * denotes comglex

conjugation and the entries of the inverse DFT matrix F'*' =
{F;"} are given as

X =

F}:V 627rjuk‘/W

Due to the special structure of the Fourier basis, the matrix
entries can be defined recursively, i.e. k’th row of F¥ can be
“generated” from k — 1’th row by a linear transformation:

®3)

where w = 2w /W and F3” = 1. The k’th sample of x defined
in (2) is

FeY

ejwyF}:Zl

T = ZSZ (4)

where s;, = F;Vs”. Substituting this definition to (3), by
representing a complex number as a 2-D vector and mul-
tiplication by a complex number with unit magnitude as a
rotation, we get (by a slight abuse of notation)

i = Blv)si, (5)
where s = ( Shr  S&k )" with s = Re {s}, ss =Im{s}.
Here, B(0) is a Givens rotation matrix defined as

o) = (i) o))

In this vector notation, we can get rid of the frequency index
v in (3) by defining a 2W x 1 state vector

_ 0 0 v v WwW-1 W-1 T
Sk = SR k>SS ks SRSk - 3SR E 1SSk

and rewriting (4) as

. (1 0 1 0 --- 1 0
= “\o1o01 - 0 1 )%
When x is real, which is the case for single channel audio
signals, we have redundancy in transform coefficients due

to the conjugacy relationship s = (s ~=*)*. In this case
(assuming W is even) we redefine a W x 1 state vector as

TR,k
T3,k

w/2-1

w/2-1
S Sqk

1S3k

w2

_ 0 1 1 v v
Sk = | SR,k> SR,k> SS ks + - » SR k> SSks + - 18§R7k

Hence we can rewrite (5) and (4) respectively as

s = Asg-1 (6)
Tk = TRk = Csk (7)
w

A = B {B(O),B(w),...,B(Vw),...,B(?w)}8)

c = (1 2 0 2 0 2 0 1) 9)
Here, B (B1, B2, ...) denotes a block diagonal matrix
with blocks By, Ba,.... 2

2Notice that, we have B(0) = I and B(%w) = B(w) = -1
respectively — the rotation matrices of the DC and highest fre-

quency band. Hence s% and 32/2 are unobservable; they can be
removed from the model by redefining B(0) =1 and B(w) = —1.

v=0..W-1

Figure 1: The probabilistic phase vocoder as a graphical
model. The rectangle denotes a plate, W copies of the
nodes inside. The directed links between the time slices are
parametrised by the transition model given in (10). The
observation model is given by (11) and the first time slice
is drawn according to (12). The links from parameters A
and @ are drawn dotted to maintain clarity. For fixed pa-
rameters, this model topology is a factorial Kalman filter
model. The inverse DFT corresponds to the special case
when W =K, R=0, Q =0 and A is defined as in (8) ,i.e.,
all links are deterministic. The initial conditions are given
by the Fourier transform coefficients s§ = s” . The obser-
vation model is given by (4) and the links between the time
slices correspond to (5).
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The probabilistic phase vocoder (PPVOC) model is a
stochastic version of the deterministic transition and obser-
vation equations in (6) and (7) respectively

sklsk—1  ~ N(si; Asp—1,Q) (10)
xk\sk ~ N(l‘k,csk,R) (11)
So N(So; O, P) (12)

here, N (z;u,Y) denotes a Gaussian distribution on in-
dex set x with mean p and covariance matrix ¥. Simi-
lar formulations are used previously to model pitched mu-
sic instruments[7] or in the econometrics literature to model
seasonal fluctuations [8]. To treat the parameter estimation
in a Bayesian framework, we assume the following conjugate
prior distributions on the parameters

e A ~ N@E Ae Qa,X4)
8 Q ~ [[79(s:500ib0:)

T
> Here, ZG(x; a, b) denotes a inverse Gamma distribution with

location parameter a and shape parameter b. The operator
¥ ‘“reshapes” a matrix as a column vector by concatenating
its columns and @ X is a column vector equal to the di-
agonal of the square matrix X. To maintain interpretability,
we assume that C' is known and is fixed as in (9). Simi-
larly, we fix the hyper-parameter Q4 (“expected transition
matrix”) to (8). In this paper, we further assume, that the
covariance matrices P and R are known; it is straightforward
to include them in the estimation procedure by using priors
analogous to (14). The graphical model is shown in figure 1.

IR

To solve the problem in (1) exactly, we need to first infer the
posterior distribution

P(S.©x) = (]S, O)p(SION(O) = - 0(S,0) = P (15)

T



where S = s)'% !, © = (A,Q) and Z, = p(zx) is a nor-
malising constant (also known as the evidence or data like-
lihood). Subsequently, we need to compute the predictive
distribution

po-len) = [ dSdOP(o-s]S,O)p(S,Blex) (10)

Exact evaluation of the posterior distribution in (15) is in-
tractable due to couplings between © and S, so we will resort
to approximations.
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One possible approximation method, that leads to a practi-
cal optimisation procedure is the mean field approach, also
known as variational Bayes [9, 10, 11]. In the particular
case of (1), mean field boils down to approximating the ex-
act posterior P in (15) with a simple distribution Q in such
a way that the integral expression (16) becomes tractable.
An intuitive interpretation of mean field is minimising the
KL divergence with respect to (the parameters of) Q where

KL(QIP) = (ogQlq - (log-0(5.:0)) (17

Q

Here, (f(2)),q) = J dzp(z) f(z) denotes the expectation of

f w.r.t. p. Using non-negativity of KL [12] we obtain a lower
bound on the evidence

logZ, > (log¢(S, 6)>Q — (log Q>Q (18)

It is clear that maximising this lower bound is equivalent to
finding the “nearest” Q to P in terms of KL. For the PPVOC
model, we choose the approximating distribution Q of form

Q0 = JJaGbtx-1)a(©a) =[] Qu(Sa)Qa(O0)

ael aelC

where ¢ = {vi1,...,un} is a set of disjoint clusters of
frequency bands such that v; Nv; = 0 for i # j and
U,vi = {0,...,W — 1}. The parameter O, = (Aa,Qq)
denotes the diagonal blocks of A and ) matrices, that cor-
respond to the frequency bands v € a. In contrast to naive
mean field where Q is fully factorized, it is natural to adapt
a structured mean field method [13, 14] by choosing a Gauss-
Markov chain for ¢(s§.x_1) terms:

Q(SE)!:Kfl) =

q(s3) ] a(silsi-1)
10a) = q(Aa)e(Qa)

The parameter distributions can chosen to have the same
functional form as (13) and (14). Although a closed form
solution for @ still can not be found, it can be easily shown,
e.g. see [15], that each factor potential Q. of the optimal
approximating distribution should satisfy the following fixed
point equation

Qu o exp ((loge(S.0))q_, ) (19)

where Q- = Q/Q,, i.e. product of all factors excluding
Q.. Hence, the mean field approach leads to a set of fixed
point equations that need to be iterated.
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There is a direct link between the mean field approximation
and the EM algorithm for parameter estimation [16]. One
way to see this is to constrain the parameter distribution to
have the form G(©) = §(© — ©*), where § is a Dirac pulse.
Because of the additional constraint, we need to find the
“closest” degenerate distribution to the actual mean field
solution ¢(©) given in (19). Hence, we minimize a second
KL as

©" = argmin KL(6(0 - 0)|l¢(0))

= argmax (log ¢(S,0)),(s) = arg max q(0) (20)

This resulting algorithm is equivalent to EM, where E and M
steps correspond to computing the expectation w.r.t. ¢(S)
and subsequently finding the best parameter ©*. Due to the
degenerate form of §(0), the update step for ¢(S) is trivial-
ized as:

logq(S) = (log(S,0))5e_e-) =logd(S,0") (21)

The algorithm proceeds iterating (20) and (21) as in regular
EM. When there is only one cluster with C = {{0... W —1}},
this algorithm is equivalent to EM for the linear dynamical
system [17]. In this paper, we will provide results for the EM
case only.
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The simulations were performed on the data set used in [3]:
16-bit 44.1 kHz signals are downsampled to 11.025 Hz and
corrupted by a series of gaps in the range of 2ms-4ms.
The two examples (piano, trumpet) are destorted such that
36.5% and 37.2% of the samples are missing. The data set
and reconstruction results will be made available at http:
//wuw-sigproc.eng.cam.ac.uk/ atc27/em-restore/.

In the first experiment, our aim is to test the effect of
the clustering choice on to the SNR (Signal-to-noise ratio)
of the reconsturction, where the reconstruction is calculated
as (y)o- We run our test with the number of frequency bands
W = 64 and on the first 600 samples of the corrupted trum-
pet signal. Adjacent frequency bands are put into clusters,
e.g., when CS =8, C = {{0,...,7},{8,...,15},...}. The
results in table 1 suggest that adapting the transition ma-
trix improves the SNR, significantly so when the clusters are
small.

CS | adapt A | fixed A
1 4.8 2.3
2 5.5 3.1
4 9.7 5.3
8 9.6 5.1
16 10.9 8.8
32 7.6 8.9

Table 1: Comparison of SNR (in dB) of the reconstruction
with and without adapting the transition matrix A versus
cluster size CS.

In Table 2, we give a short table a typical results when
W =CS = 40.

Our results and informal subjective listening tests sug-
gest that we can get reconstruction performance comparable
to existing methods. One advantage of our variational ap-
proximation technique, when compared to MCMC, is that
it tends to converge quite fast to a solution. This suggests
that, whilst the exact problem is intractable, the parame-
ter regime useful for restoration of audio admits a simple
deterministic approximation.
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Figure 2: Illustration of the reconstruction result on seg-
ments from trumpet signal. In this example, W = 32 fre-
quency bands are divided into two clusters with C'S = 16.
Solid line denote the observed samples. Small dotted line is
the original signal, big dotted line is the reconstruction.

sin-AR [1] | W&G [3] | PPVOC-EM
piano 1.46 10.17 7.68
trumpet - 5.94 7.10

Table 2: Comparison of improvement in SNR (in dB). Miss-
ing samples are assumed to be zero when computing the
SNR. The model achieves comperable performance to W&G

(3]
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The PPVOC model described in this article is an instance
of the linear dynamical system, also known as the Kalman
filter model, e.g. see [18]. In our case, the interpretation
of the particular parametrization is more important: The
transition model at each chain s _; generates an indepen-
dent “basis function”. The observation model adds up each
basis function to generate the observation zo.x—1. In con-
trast to the DF'T, where there is a strictly sinusoidal basis, in
PPVOC, the individual basis functions are “generated” by a
stochastic process. By fine tuning the parameters A and @
of this process, the model has more flexibility to adapt itself
to the statistics of the observed audio signal. For example,
adjusting a diagonal block of A is effectively equivalent to
tuning the center frequency of the corresponding frequency
band. This flexibility also allows a Bayesian treatment of the
problem in (1). Moreover, the dynamic system formulation
circumvents problems associated with using a fixed analysis
window length or finding an optimal basis set.

Although our initial results are promising, two questions
are still open and require further research for an answer: (1)
Does the PPVOC model provide a practical alternative for
audio restoration? (2) Is the EM approach sufficient as an
approximation method 7 At this stage, it is still early to
answer the first question, and more simulation studies have
to be carried out. To answer the second question, we are
currently testing full variational approximation where the
parameters are integrated out. This direction is attractive,
since for related models good results were reported, e.g. see
[10]. Alternatively, sampling methods should also be com-
pared.

A. T. Cemgil would like to thank to
Christopher Raphael for helpful discussions about the phase
vocoder.
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