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ABSTRACT

Subspace based noise suppression schemes typically rely on eigen-
value estimates of covariance matrices of successive noisy signal
frames. We propose in this paper a scheme for improving these
estimates, and, consequently, the performance of the noise suppres-
sor. More specifically, the presented scheme aims at combining past
and current eigenvalue estimates into approximately stationary time
series in order to obtain a smoothed eigenvalue estimator with a re-
duced variance. The scheme is general in the sense that it is appli-
cable to essentially any subspace-based noise suppression scheme.
In simulation experiments with speech signals degraded by additive
white Gaussian noise, the proposed scheme shows improvements
over the traditional non-smoothed approach for a range of objec-
tive quality measures. Further, in a subjective preference test, the
proposed method was prefered in more than 90% of the cases.

1. INTRODUCTION

With the steady growth of mobile, digital voice communications
systems, there is an increasing demand for such systems to work
well in acoustically noisy environments. Since most of these sys-
tems are designed for nearly noise-free input speech signals, they
do not perform well when the input signal is degraded by acoustic
background noise. One solution to this problem is to apply a speech
enhancement algorithm as a pre-processor to reduce the background
noise in the noisy speech signal.

Classical approaches for single-channel noise reduction include
methods based on the short-time Fourier transform (STFT), e.g. [1],
and model based methods which attempt to exploit apriori speech
production knowledge, e.g. [2, 3]. More recently, the subspace
based approach [4] was proposed. This scheme exploits the fact
that the covariance matrix of a noisy speech signal frame can be
decomposed into two mutually orthogonal vector spaces: a signal
(+noise) subspace and a noise subspace. Noise reduction is obtained
by discarding the noise subspace completely, while modifying the
noisy speech components in the signal (+noise) subspace. Later, ex-
tensions where presented to allow for coloured noise, e.g. [5], and
to take into account the perceptual effects of the human auditory
system, e.g. [6].

The subspace based enhancement scheme relies on eigenvalues
of the covariance matrix of the noisy speech signal, e.g. [4, 7, 8]. In
practice, covariance matrix estimates and corresponding eigenval-
ues are computed on a frame-by-frame basis throughout the signal
to be enhanced. Unfortunately, due to the variance of the covari-
ance matrix estimates and consequently the corresponding eigen-
values, the resulting enhanced speech signal may contain a signif-
icant amount of perceptually disturbing (’musical’) residual noise.
In [4] this problem was reduced by introducing estimators which
minimize the signal distortion subject to energy constraints on the
residual noise.
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The problem of musical noise is well-known for the class of
STFT based spectral-subtraction type algorithms, e.g. [9], where
the gain functions applied to the noisy signal rely on estimates of
the power spectral density (psd) of the noisy signal; here, the tra-
ditional solution is to average psd estimates across time in order
to reduce the variance of the estimates. The problem of determin-
ing the number of time-domain neighbors to use for computing this
smoothed psd estimate is delicate; if too few are used, the vari-
ance of the estimator is not reduced enough and the musical noise
problem remains, but if too many are used, the signal region across
which the average is computed can not be assumed stationary, and
the estimate becomes biased, leading to speech distortions in the
enhanced signal.

In this paper we propose a smoothed subspace based noise sup-
pression approach for speech enhancement. Along the same lines
as for the smoothed spectral subtraction algorithm described above,
the eigenvalues of the noisy covariance matrix are computed as an
average of the current and possibly several past eigenvalues. We
show that the decision as to which and how many of the past eigen-
values to use to compute this average is important to achieve good
performance, and solve this problem using a generalized likelihood
ratio test. More specifically, we aim at forming averages using time
sequences of eigenvalues which can be considered roughly station-
ary. The proposed method is general and can be applied to essen-
tially any subspace based enhancement algorithm. We show in sim-
ulation experiments with speech signals degraded by white noise
that the smoothed subspace approach leads to objective as well as
subjective performance gains over a traditional, non-smoothed sub-
space algorithm.

2. THE SIGNAL SUBSPACE APPROACH FOR NOISE
REDUCTION

To facilitate our discussion, we review here the classical subspace
based approach for noise reduction, see e.g. [4, 7]. We consider
a signal model of the form x = s + w, where x ∈ R

N denotes an
observed noisy speech signal vector, s denotes the clean speech sig-
nal and w is an additive noise vector. We assume that the clean
speech and noise processes are uncorrelated. Further, we restrict
ourselves to the white noise case where the noise covariance ma-
trix is of the form Rw , E{wwT } = s2

wI, where E{·} denotes the
statistical expectation operator, (·)T denotes vector transposition,
s2

w is the noise variance, and I is the identity operator in R
N .

Let Rs ∈ R
N×N denote the covariance matrix of the clean signal,

and let Rs = ULsUT denote its eigenvalue decomposition (EVD);
the matrix U ∈ R

N×N is unitary and contains the eigenvectors as
columns (U is also called the Karhunen-Loéve transform matrix),
and Ls = diag(ls1 , . . . ,lsK ,0, . . . ,0),K ≤ N is a diagonal matrix
with the eigenvalues ls1 ≥ ls2 ≥ ·· ·lsK ≥ 0 on the main diago-
nal. Using that w is white and uncorrelated with s we can write
the noisy covariance matrix as Rx = Rs + Rw = U

(

Ls + Is2
w
)

UT .
We see that Rx, Rs, and Rw share their eigenvectors, and that the
noisy eigenvalues are simply lxk = lsk + s2

w, k = 1, . . . ,N. It is
convenient to partition U as U = [U1 U2], where U1 ∈R

N×K consti-



tutes an orthonormal basis for the signal (+noise) subspace, while
U2 ∈ R

N×(N−K) constitutes a basis for the noise subspace; clearly,
we have UT

1 U2 = 0.
Let ŝ = Hx be a linear estimator of the clean speech vector s,

where H ∈ R
N×N is a filtering matrix. We wish to find the matrix

H∗ which minimizes the power of the estimation error e2 = E‖s−

ŝ‖2
2 = E‖s−Hx‖2

2 =trE{(s−Hx)(s−Hx)T }. Solving ¶e2

¶H = 0 for
H results in the optimal linear estimator given by

H∗ = U

[

G 0
0 0

]

UT = U1GUT
1 , (1)

where G = diag(ls1 /s2
w + ls1 , · · · ,lsK /s2

w + lsK ) ∈ R
K×K . Using

that lxk = lsk +s2
w, we can rewrite G as follows

G = I−diag(s2
w/lx1 , . . . ,s

2
w/lxK ). (2)

Thus, in practice we compute the matrix G using the eigenvalues
lxk of the covariance matrix Rx of the noisy signal and knowledge
of the noise level s 2

w. From Eq. (1) we see that the optimal linear
estimate ŝ = H∗x is found by first applying the KLT to the noisy
signal, resulting in z = UT x, then modifying the KLT coefficients
using a diagonal matrix, and finally obtaining the enhanced signal
vector by back-transforming the modified KLT coefficients using
the inverse KLT (pre-multiplication with U).

3. THE SMOOTHED SUBSPACE APPROACH

The subspace based enhancement scheme relies on eigenvalues of
covariance matrices Rx of noisy signal frames, see Eq. (2). How-
ever, the true, underlying covariance matrices are not known but
must be estimated from the available noisy signal, and therefore the
eigenvalues of these estimated covariance matrices are only esti-
mates of the true underlying eigenvalues. In this paper we propose
a novel technique for improving these eigenvalue estimates using a
smoothing approach, where a given eigenvalue of Rx in frame n is
estimated as an average of several measured eigenvalues from the
current and previous frames l̃x(n) = 1

L ån
l=n−L+1 l̂x(l), where l̂x(l)

denotes the eigenvalue of the covariance matrix Rxx estimated in
frame l. The goal here is to obtain an estimator l̃x(n) with a smaller
variance than that of the measured eigenvalue l̂x(n); for example, if
the measured eigenvalues l̂x(l), l = n−L+1, . . . ,n can be assumed
to be independently and identically distributed (iid), then the vari-
ance of the estimator l̃x(n) is 1/L that of the individual estimates
l̂x(n) [10].

3.1 An Initial Experiment

A natural first approach is to compute the smoothed estimator
l̃xk (n) of the k’th eigenvalue in the n’th frame using the k’th eigen-
values of previous frames1, i.e.,

l̃xk (n) =
n

å
l=n−L+1

l̂xk (l). (3)

We see that this approach bears similarities to traditional smoothed
spectral subtraction algorithms [9], where a smoothed power spec-
tral estimate in discrete Fourier transform (DFT) in bin number k is
obtained as an average of previous power spectral estimates in DFT
bin number k.

We tried this idea out in an initial experiment using the estima-
tor in Eq. (2) applied to succesive speech frames taken with 75%
overlap throughout a total of 20 speech signals degraded with addi-
tive white noise at a global SNR of 20 dB (a detailed description of

1We assume that eigenvalues of a given estimate of Rx appear in decreas-
ing order. Thus, l̂xk (l) refers to the k’th largest eigenvalue in frame l.
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Figure 1: Objective performance as a function of number of past
frames used for estimating eigenvalues of Rx.

the test setup as well as the objective performance measures used
can be found in Sec. 4). The value of L was kept constant for each
of the eigenvalues and across time. We then evaluated the quality of
the enhanced waveforms using a number of objective quality mea-
sures averaged across the 20 enhanced speech signals. Specifically,
Fig. 1 shows the resulting average SNR, Seg-SNR, COSH mea-
sure (symmetrized Itakura-Saito (IS) measure) and Itakura distance
(log-likelihood ratio, LLR) [11, 12] for the enhanced waveforms.
We see from this figure that rather than improving performance,
the smoothing applied in this way degrades objective quality. In
other words, the advantages of the smoothing techniques described
in [9] for spectral subtraction cannot be directly adopted to subspace
based noise suppression schemes.

To understand the reason for this result we note that any signal
frame enhanced with the subspace approach can be described in
terms of the following orthogonal subspace decomposition:

ŝ = H∗x =
K

å
k=1

gkxk with xk = ukuT
k x,

where uk is the k’th column in U , xk is the orthogonal projection of x
onto the subspace spanned by uk , and gk is the k’th diagonal element
of the matrix G. Observing that for stationary processes the eigen-
functions uk are typically sinusoidal-like2[13],we conclude that the
subspace signals xk reside in limited frequency regions. Since the
eigenvalues of Rx estimated in a given frame are ordered accord-
ing to their magnitude and not according to the frequency content
of their corresponding subspace signal, we see that the frequency
content of the k’th subspace may change across time, eventhough
the noisy signal is stationary. Thus, smoothing of the k’th eigen-
value across time corresponds, in fact, to making the unreasonable
assumption that spectrally remote events should be combined and
treated as part of the same stationary time series.

3.2 A Generalized Scheme for Eigenvalue Smoothing

In order to develop a subspace based scheme where smoothing of
eigenvalues across time is advantageous, we generalize the scheme
above. Here we allow for smoothing across subspaces with similar
frequency content; in Sec. 4 we show that this generalization leads

2This observation is especially clear in the case of circulant or Toeplitz
structured covariance matrices which are known to be diagonalizable and
asymptotically (N → ¥) diagonalizable, respectively, by the Fourier trans-
form matrix.
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Figure 2: Time-frequency representation of subspace signals xk
(represented by dots) for successive frames. Solid lines indicate
which subspaces/eigenvalues are combined to form smoothed esti-
mates. a) Smoothed eigenvalue estimates have been computed for
frame n − 1. Dotted lines indicate possibilities of extending se-
quences from frames n− 1 to include eigenvalue estimates l̂x(n)
from the current frame. b) Solid lines indicate stationary eigenvalue
sequences used for computing smoothed eigenvalue estimates l̃x(n)
of the current frame.

to performance gains over the traditional, non-smoothed case. More
specifically, instead of requiring the smoothed estimate l̃xk (n) to be
computed using eigenvalue number k in each of the L−1 previous
frames, we now choose from several eigenvalues in each of the pre-
vious frames. Further, the value of L is no longer fixed, but may
vary for each eigenvalue estimate l̃xk (n). The task at hand for a
given frame is now for each eigenvalue of Rx to decide which and
how many (if any) of the eigenvalues in the previous frames should
contribute to the smoothed estimate l̃xk (n). In order to approach the
iid assumption mentioned above, we require that eigenvalues con-
tributing to a smoothed estimate form an approximately stationary
sequence.

To do so we represent each subspace signal xk by two quantities,
i) a frequency parameter computed as

wk = argmax
w

|Xk(e
jw )|2,

where Xk(·) denotes the discrete Fourier transform of xk , and ii) the
power of xk estimated as E{‖xk‖

2} ≈ l̂xk . By doing so, we can plot
the subspace signals in the time-frequency plane as shown in Fig.
2a, where each subspace signal is represented as a dot located at its
corresponding frequency wk.

Fig. 2 illustrates how the eigenvalue sequences used for com-
puting smoothed eigenvalue estimates l̃xk (n) are formed. The solid
lines in Fig. 2a indicate which previous eigenvalues contribute to
the smoothed eigenvalue estimates in frame n−1. For example, the
smoothed estimate of the eigenvalue corresponding to the highest
frequency content is computed using two previous eigenvalues. In
order to form stationary eigenvalue sequences for computing l̃xk (n),
we re-use the eigenvalue sequences found for frame n−1. In prin-
ciple, a valid eigenvalue sequence may consist of any eigenvalue
l̂xk (n) measured in frame n concatenated with eigenvalues from any

of the sequences already formed in frame n− 1 (the solid lines).
We require, though, that the frequency content of subspaces corre-
sponding to successive eigenvalues in a sequence does not change
drastically. More specifically, we require that w j(n)/wk(n−1) < a ,
where wk(n− 1) and w j(n) describe the frequency content in any
pair of subspaces taken from frames n− 1 and n, respectively, and
a is a threshold value. Imposing this constraint limits the number
of possible subspace/eigenvalue concatenations to the combinations
marked with dashed lines in Fig. 2a.

To explain how stationary eigenvalue sequences used for com-
puting l̃x(n) are formed, let [l̂x(n − L′ + 1) · · · l̂x(n − 1)] repre-
sent any of the stationary eigenvalue sequences found for frame
n− 1, and let l̂x(n) be any of the eigenvalues measured in frame
n. For each of the possible subspace/eigenvalue concatenations
marked with dashed lines in Fig. 2a, we simply build a stationary
eigenvalue sequence by considering sequences of increasing length,
starting with the shortest possible sequence [l̂x(n− l) · · · l̂x(n)] with
l = 1. Assuming that the elements of the sequence are Gaussian dis-
tributed, we apply a generalized likelihood ratio test to determine if
the sequence can be considered stationary. If this is not the case,
the procedure is terminated, and the resulting stationary sequence
simply consists of one element, namely l̂x(n). If the two-element
sequence is found stationary, we increase l by one and repeat the
process with the extended sequence, until either the sequence fails
the stationarity test or the end of the sequence is reached. Having
generated in this way a stationary eigenvalue sequence for each of
the dashed lines in Fig. 2a, we are finally in a position to select
a subset of these sequences such that each eigenvalue in frame n
is assigned exactly one sequence, and such that no sequence com-
puted for frame n− 1 is used more than once3. Motivated by the
fact that the sequence length is roughly inversely proportional to
the variance of the corresponding smoothed estimator, we select in
this work the subset of eigenvalue sequences having the largest to-
tal length. The problem of finding this subset is a so-called linear
assignment problem for which several optimal and computationally
efficient algorithms exist, see e.g. [14]. Fig. 2b shows a possible
outcome of this procedure for frame n. The smoothed estimators
l̃xk (n) of each eigenvalue of Rx in frame n can now be computed
as the average value within each sequence. Finally, the smoothed
estimators l̃xk (n) are inserted into Eq. (2) to form a (modified) fil-
tering matrix G for frame n. The enhancement algorithm as such
remains unchanged; in fact, the proposed scheme merely improves
the quality of the noisy eigenvalue estimates and can therefore be
used in combination with essentially any subspace based enhance-
ment scheme.

4. SIMULATION EXPERIMENTS

We evaluate the presented algorithm in simulation experiments with
six different speech signal excerpts, three female and three male,
sampled at 8 kHz and with a duration of 4-5 seconds each. We
construct noisy speech signals by adding white Gaussian noise at
different SNR levels. As in [4] we choose the dimension of the
covariance matrices Rx to N = 40 samples; these matrices are esti-
mated from segments of 160 samples. We perform an eigenvalue-
decomposition of Rx to find the eigenvalues l̂xk (n). We consider
two ways of determining the filter matrix G in Eq. (2), either by in-
serting the smoothed eigenvalues l̃xk (n) found with the proposed al-
gorithm, or, as is traditionally done, by inserting directly the eigen-
values l̂xk (n) of the covariance matrix Rx estimated from the seg-
ment in question. We use the latter approach as a reference method
to which we compare the proposed scheme. In this work, the di-
mension K of the signal subspace in segment n is determined as
the number of estimated eigenvalues l̃xk (n) above the noise floor

3Enforcing this one-to-one correspondence between past and present
subspaces is reasonable when for example the subspace signals represent
the harmonics in a voiced speech region.
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Figure 3: Objective performance scores as a function of input SNR,
averaged across six speech signals. a) SNR, b) Seg-SNR, c) COSH
measure, and d) Itakura distance (log-likelihood ratio, LLR).

s2
w: K = |{l̃xk (n) : l̃xk (n) > s2

w,k = 1, . . . ,N}|; for the reference
method, K is given by a similar expression with l̂xk (n) replac-
ing l̃xk (n). In both cases, the enhanced signal is constructed by
overlap-adding enhanced frames using 75% overlap between suc-
cessive frames.

In order to evaluate the quality of the enhanced waveforms
we apply a number of objective speech quality measures. These
include the signal-to-noise ratio (SNR) defined as SNR(ŝ′,s′) =
‖s′‖2/‖ŝ′ − s′‖2, where s′ and ŝ′ denote the clean and enhanced
signal, respectively, and the segmental SNR (Seg-SNR) defined as
the average SNR computed across signal segments taken troughout
s′ and ŝ′, respectively. Also we apply spectral distortion measures
including the COSH measure (symmetrized Itakura-Saito (IS) mea-
sure) [11] and the Itakura distance measure (log-likelihood ratio,
LLR), e.g. [12].

Fig. 3 shows objective quality scores averaged across the six
test signals as a function of input SNR for the proposed method, the
non-smoothed method, as well as for the unprocessed noisy input
signal. We see that the proposed method succeeds in improving the
objective scores consistently across the range of input SNRs.

To study the performance of the proposed method further we
conducted an OAB subjective preference test using two female and
two male speech signals degraded with additive white Gaussian
noise at SNRs 20 and 10 dB. The noisy signals were enhanced with
the non-smoothed as well as the smoothed enhancement method
(the proposed scheme). We presented signal triplets consisting of
the original noise-free signal, followed by the two enhanced ver-
sions in randomized order. The task of the listener was for each sig-
nal triplet to decide which of the two enhanced signals had the high-
est subjective quality. Each such triplet was repeated four times.
Ten listeners participated in the test (the authors not included), and
the listeners were allowed to listen to each triplet using headphones
as many times as needed to make a decision. Table 1 shows the rel-
ative preference for the proposed method for the female speakers,
f1 and f2, and for the male speakers m1 and m2. The subjective test
reveals a clear preference for the proposed method.

5. CONCLUSION

We have presented a novel scheme for improving the eigenvalue
estimates of successive noisy covariance matrices. The presented
scheme aims at finding stationary eigenvalue sequences across time,

SNR f1 f2 m1 m2
20 95 90 100 100
10 93 95 83 93

Table 1: Relative preference [%] for proposed method over non-
smoothed method.

in order for a smoothed estimator to approach the underlying ex-
pected value. The scheme is general in the sense that it is appli-
cable to essentially any subspace-based noise suppression scheme.
When applied to the problem of enhancing speech signals degraded
by additive white Gaussian noise, the proposed scheme shows ob-
jective as well as subjective improvements over the traditional, non-
smoothed, approach. More specifically, in a subjective preference
test, the proposed method was prefered on average in more than
90% of the cases.
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