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ABSTRACT

This paper presents a novel template representation that can be
used in template-based object tracking methods. More specifically,
the Multiscale Morphological Template is introduced and incorpo-
rated in a template-based object tracking algorithm. The proposed
template can be updated over time to cope with changing environ-
ment/object conditions. The algorithm is applied to face tracking
in scenes with complex background. Results of the object tracking
algorithm using the proposed and existing template representations
are compared using measures based on ground truth data. The pro-
posed template is proved to be superior to existing templates.

1. INTRODUCTION

Video-based object tracking has received considerable attention by
the research community in the past decades, mainly due to the
wide range of its potential applications. A great amount of this
research has focused on tracking humans for applications such as
smart surveillance, human computer interaction, motion capture for
animation, coding, compression, content-based querying, indexing
and retrieval, gesture recognition, and 3D reconstruction. However,
the difficulties introduced by different capturing, object and envi-
ronment conditions, such as the use of a single camera and the as-
sociated projection ambiguities, poor or varying lighting conditions,
occlusion or self occlusion, unconstrained motion, clutter, variabil-
ity in the body shape and appearance of humans due to their clothing
etc., has forced researchers to make a number of assumptions in or-
der to handle specific aspects of the overall problem. These can be
related to the camera/object motion, to the environment conditions
or the object conditions. For a comprehensive review of different
methods, the reader is referred to [1] and [2].

Template matching techniques have been used by many re-
searchers to perform 2D object tracking. The first step (initializa-
tion step) in template-based algorithms involves the selection of the
template that will be used, i.e. the creation of an image model of
the object to be tracked. Such models can be individualized and
acquired on-line (e.g. using the first frame of the video sequence)
or they can be generic and created off-line by employing statistical
methods. Face templates can be obtained e.g. by the use of eigen-
faces or Gabor wavelets, both of which have been used in many
tasks, including object/face recognition, verification, authentication
and tracking [3, 4]. Object tracking based on template matching
involves searching the current frame of the video sequence to deter-
mine the image region that best resembles the template, based on a
similarity measure. The Sum of Absolute Differences (SAD) and
the Sum of Squared Differences (SSD) are frequently used as sim-
ilarity measures because of their simplicity, while others, such as
joint entropy, normalized correlation and mutual information have
also been employed [1].

In this paper, a novel template representation for use in 2-D
template-based object tracking methods is presented. The object of
interest is represented by a multivalue template, the Multiscale Mor-
phological Template. Vectors are assigned to each template pixel,
by applying the multiscale morphological dilation-erosion using a
scaled structuring function [5] to the image points that correspond
to the template pixels. The motivation that led us to seek an alterna-

tive to the Gabor filters tuned to different orientations and scales,
that have been previously used to build the vectors in the tem-
plates, was mainly their increased computational overhead. Addi-
tionally, multiscale morphological techniques provide good object
representations (e.g. representation of facial features and faces),
since dilations-erosions deal with local extrema in the image. This
has been verified in other applications, such as face recognition and
authentication [6], where the Gabor analysis has been superseded
by the multiscale morphological dilation-erosion. The template can
be initialized as the bounding or the escribed box (to avoid the inclu-
sion of background pixels in the template) of the object of interest
(e.g. a human face) in the first frame of a video sequence. Initial-
ization can be manual, as in this paper, or automatic (i.e. the output
of an object detection module).

The location of the tracked object in the current frame is cal-
culated based on the maximization of the similarity of the vectors
at the corresponding pixels in the template and the image pixels on
all possible template locations in the current frame of the video se-
quence. If the similarity of the template falls below a threshold, the
initial template used in the matching process is replaced by the im-
age region that corresponds to the template location in the previous
frame.

The object tracking algorithm used to test the proposed tem-
plate representation can be classified as a standard template-based
rigid object tracking method. Assumptions made include presence
of a single object in the scenes, partial occlusion or no occlusion at
all and known initial position of the object of interest. The algorithm
can track objects in scenes with uncontrolled lighting conditions
and a complex/moving background. The results of the object track-
ing algorithm using the proposed template are compared against the
results obtained with existing template representations. The com-
parison is performed using ground truth-based performance mea-
sures and the proposed template representation is proved to be su-
perior to existing template representations.

The remainder of the paper is organized as follows. Section
2 describes the Multiscale Morphological Template representation
and incorporates it into a standard template-based object tracking al-
gorithm. In Section 3, variants of existing template representations
and object tracking algorithms that are compared with the proposed
method are briefly described. Section 4 presents the ground truth
data-based measures that are used to evaluate the performance of
the object tracking algorithm when using the proposed and exist-
ing template representations. In Section 5, experimental results are
presented. Conclusions are drawn in Section 6.

2. MULTISCALE MORPHOLOGICAL TEMPLATE
TRACKING

As already mentioned, the goal of tracking based on template
matching is to search the current frame of the video sequence in
order to determine the image region that best resembles the tem-
plate, based on a similarity measure. Essentially, the goal of a tem-
plate matching algorithm is to estimate the parameters of a geomet-
rical coordinate transformation, which would “place” the template
onto the target image in such a way as to maximize (minimize) the
similarity (distance) measure used. Let the superscripts ¢ and ¢ de-



note the template and the current frame respectively and let A be
the image region corresponding to the object being tracked in the
current frame c¢. For a rigid object, A can be obtained from the
template, denoted by A’, by employing a coordinate transformation
0(A") = A° the parameters of which should be estimated by the
algorithm. Affine (rotation, translation, scaling) or quadratic trans-
formations can be employed. Therefore, every point x¢(x,y) in the
target region is obtained from a corresponding point x’(x,y) in the
template:

x¢ = 0(x";a%), (H

where a“ denotes the transformation parameter vector associated
with A¢ and determines the object location in the current frame.
Estimation of the transformation parameters is performed by iden-
tifying the image region that best matches the template.

Let R and Z denote the set of real and integer numbers, respec-
tively. Given an image f(x) : F C Z? — R and a structuring function
g(x):GC 7% — R, the grayscale dilation and erosion of the image
f(x) by g(x) are denoted by (f @ g)(x) and (f © g)(x) respec-
tively. The multiscale dilation-erosion of the image f(x) by g(x) is
defined by [5]:

(faicf"))(x) if o>0
*26)(x) = x if o= 2)
(f*gs)(x) (FEg)) if &<

where the integer ¢ denotes the scale parameter of the structuring
function. The computational complexity of the dilation-erosion op-
erations depends on the choice of the structuring function. A cir-
cular structuring function is often employed for fast computation of
these morphological operations, as in this paper. Figure 1 depicts
the output of multiscale dilation-erosion when applied to a facial
template for various values of the scale parameter. It can be easily
seen that the multiscale dilation-erosion captures significant infor-
mation with respect to distinctive features such as the eyes, eye-
brows, nose tip, nostrils, lips, face contour, etc.
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Figure 1: The multiscale dilation (sub-images 2-5) and erosion
(sub-images 6-9) of a facial image (sub-image 1), using a circular
structuring function for scale parameter values 1-4 respectively.

Let V! = {x;,},k=1,...,M,I=1,...,N be the set of pixels of
an M x N rectangular template. The outputs of multiscale dilation-
erosion for ¢ = — 0y, ..., 0, form the vector j, also called “jet”:

j(ka) = ((f*gc,,,)(xk,1)7~-7(f*g1)(xkﬁz)7f(xk,1)?
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where x; ; = (k,1) denotes the coordinates of a template pixel.

The Multiscale Morphological Template Tracking (MMTT) al-
gorithm tracks an object by exhaustively searching the current frame

in a region around the location of the template in the previous frame,
for the template location, that maximizes (minimizes) a similarity
(distance) function between the vectors at the template pixels and
the corresponding image pixels of the candidate template locations.
The exhaustive search is bounded by a maximum offset in the x and
y directions, which is set to 30 pixels in this paper. To cope with
scale changes of the tracked object (e.g. in case a person is moving
towards/away from the camera), the exhaustive search in the current
frame is repeated for different template sizes, which are determined
by the size of the tracked object in the previous frame. To cope with
in-plane rotation, the template should be rotated as well, i.e. tem-
plate rotations are not considered. In the current implementation,
the algorithm can cope with object translation parallel to the camera
and towards/away from the camera. The similarity function is based
on the norm of the difference between the vectors that correspond to
each template pixel and the corresponding image pixel of the can-
didate template locations in the current frame. Let V< = {x} be
the set of image pixels of a candidate (M x N) template location in
the current frame, where xj ; = (r,s) denotes the coordinates of an
image pixel; » = ry +k and s = 5, + 1, where (r,,s,) denotes the
image coordinates of the top-left pixel of a candidate template loca-
tion,k=1,...,Mand [ =1,...,N. The goal of the MMTT algorithm
is to find the template location in the current frame, where the set V¢
of its image pixel coordinates maximizes (minimizes) the similarity
(distance) function:

Sxh = X {SG60.00400)) @
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where S, (j(x;,), j(x;{,l)) denotes a similarity (distance) measure

between the vectors at template pixel (k,/) and the corresponding
image pixel (r,s) of the candidate template locations in the current
frame. Two measures have been employed in the similarity (dis-
tance) function of the MMTT algorithm, namely the normalized
correlation:
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where (-) denotes the inner product, and the L, norm:
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To account for changes in the environment conditions (e.g. il-
lumination changes) and changes caused by the object motion (e.g.
the in-depth rotation of a human face), the template A’ is updated
if the similarity (distance) between the template and the image re-
gion that matches the template in the current frame falls below (rises
above) a threshold. In such a case, the initial template used in the
matching process is replaced by the image region that best matched
the template in the previous frame, which is employed in subse-
quent matching. Obviously, higher (lower) values of the similarity
(distance) threshold should account for even small changes in the
object/environment conditions. In the case of normalized correla-
tion, the threshold is fixed, whereas in the case of the L, norm,
the threshold varies. The normalized correlation and the L, norm
threshold values that were used in the experiments presented in this
paper were set to 0.5 and 75% of the mean value of the L, norm
that produced the best template match in all previous frames re-
spectively.

3. VARIANTS OF EXISTING TEMPLATE
REPRESENTATIONS AND TRACKING ALGORITHMS

In order to facilitate comparison with other template representa-
tions, the algorithm described in Section 2 is modified so that 2-D
Gabor wavelets (planar sinusoids multiplied by a two dimensional
Gaussian) are used instead of (3) to form vectors at each template
pixel. The vectors consist of coefficients that are computed by con-
volving the template pixel (k,!) with the following wavelet kernel:
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K =kcos6 +1sin 6, "= —ksin® +1cos6. (8)

A specifies the frequency of the wavelet, 6 specifies the orientation
of the wavelet, ¢ specifies the phase of the sinusoid, u specifies
the radius of the Gaussian and 7y is the aspect ratio of the Gaussian.
Three different sets of parameter values have been employed, the
original and a simplified set of the values introduced in [7] and the
values proposed in [8]. These variants will be referred to as Gabor
Template Tracking (GBTT) algorithms.

Two other simple template matching object tracking algorithms
employing simple templates of grayscale values were also com-
pared with the proposed method. The template matching step con-
sists of exhaustively searching (similarly to the algorithm in Sec-
tion 2) for the template location in the current frame of the video
sequence that minimizes the SSD:

SSD=Y (AL —AL)% ©)
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or maximizes the normalized correlation:
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between the template and the image region that corresponds to can-
didate template locations. Afc‘l and A¢; are the brightness values of
the template pixel (k,/) and the corresponding image pixel (r,s),
whereas A’ and A are the mean brightness values in the template
and the image regions that correspond to candidate template loca-
tions in the current frame respectively. These two algorithms will be
referred to as Grayscale Template Tracking (GTT)-SSD and (GTT)-
NC from this point onwards. In all variants, the location of the
object of interest was manually initialized and the template was up-
dated in a manner similar to the algorithm presented in Section 2.

4. EVALUATION OF TRACKING PERFORMANCE

Performance evaluation of the proposed tracking algorithm was ac-
complished using manually acquired ground truth data. For this
reason, the bounding box of human faces was manually outlined
in all the frames of several video sequences. Two different error
measures were employed to perform the evaluation. The first error
measure calculates the percentage of the ground truth object image
region that is not correctly tracked by the algorithm. The second
error measure evaluates the percentage of the image region tracked
by the algorithm that does not correspond to the actual object as
defined by the ground truth data (i.e. the one that corresponds to
portions of the background). Let S, and S, denote the ground truth
image region and the image region tracked by the algorithm in a
frame respectively. Then, the two measures can be defined on a
frame basis by:

A(Sg NS A(SaNSg
d]: (gﬂ (,1)7 L= (am g)7 (11)
A(Sg) A(Sa)
and on a sequence-basis by:
1 :
D=2 Y d), =12 (12)

t=1

where S5 denotes a set’s complement, A denotes the area of an im-
age region and K is the number of frames in the video sequence.

These measures can be subsequently combined using a weighting
scheme to produce a single numerical measure:

D= aD, +pD, (13)

where the parameters o and 3 are weight constants. The results
presented in this paper were produced using a = f§ = 0.5.

5. EXPERIMENTAL RESULTS

A series of tests were first conducted to compare the two similarity
(distance) measures. Normalized correlation was proved to produce
the best results. Another set of tests were then performed to assess
the optimum length of the vectors (jets) formed at each template or
image pixel, both in terms of accuracy and speed. Table 1 presents
the results with respect to the error measures introduced in Section
4, obtained for various ranges of values of the scale parameter ¢
when using the normalized correlation as the similarity measure.
The conclusion drawn from this set of tests was that increasing the
o value above 9 leads to only slight performance increases, while at
the same time resulting in considerably higher computational over-
head. Therefore, the range of values of the scale parameter was set
too=-9,...,9.

orange | D; (%) | D, (%) | D (%)
-1,..,1 12.09 12.24 12.17
-3,...3 11.45 11.65 11.55
-5,...5 11.13 10.76 10.95
Ty 9.87 9.17 9.52
-9.....9 9.86 8.91 9.38

Table 1: Comparison of tracking results for various ranges of values
of the scale parameter o with respect to error measures D;,i = 1,2
(12) and D (13).

The MMTT algorithm has also been tested on a number of
single-subject indoor and outdoor video sequences, as well as on
studio video sequences of the reference database presented in [9].
Results of the proposed algorithm when tracking the face of the sub-
ject in one of the outdoor video sequences are illustrated in Figure
2. In this sequence, a female subject is moving, staying within the
field of view throughout the sequence, with outdoors lighting condi-
tions and no occlusion. The results clearly illustrate the successful
localization of the face throughout the sequence.

Table 2 (last row) presents the results of the MMTT algorithm
with respect to the error measures described earlier for all test se-
quences (mean value), as well as the average frame rate obtained.
To enable comparison with existing template representations, the
same performance measures were used to evaluate the results of the
various template representations and algorithms presented in Sec-
tion 3. Results are contained in rows 1-5 of Table 2. Labels “GBTT-
17, “GBTT-2” and “GBTT-3” correspond to results obtained with
the GBTT algorithm, when using different sets of parameter val-
ues for the Gabor wavelets. It is clear that the proposed template is
superior to all others.

Algorithm | D, (%) | D, (%) | D (%) | Frame Rate
GTT-NC 13.81 13.88 13.85 5.120
GTT-SSD 15.46 15.75 15.60 6.540
GBTT-1 [7] 12.45 18.52 15.49 0.020
GBTT-2 [7] 11.23 12.64 11.94 0.080
GBTT-3 [8] 10.88 11.81 11.35 0.005
MMTT 9.86 8.91 9.38 2.830

Table 2: Comparison of MMTT and other template representations
with respect to error measures D;,i = 1,2 (12), D (13) and frame
rate for all test video sequences.



Figure 2: Tracking results of the proposed algorithm for a 350-
frame segment of a video sequence. Sample frames taken at 50-
frame intervals.

Figure 3 depicts a segment of a studio sequence, where the par-
tial occlusion handling capabilities of the algorithm are illustrated.
In the sequence, the face of a male subject is moving and rotating
in depth, while being partially occluded by the hand of the subject.

6. CONCLUSION

In this paper, a novel template representation, the Multiscale Mor-
phological Template, that can be used in template-based object
tracking methods was introduced. The proposed template was in-
corporated in a template-based object tracking algorithm. Changing
environment/object conditions were handled by updating the initial
template over time. The algorithm was applied to face tracking with
good performance in indoor and outdoor scenes, while being robust
to partial occlusion. Results of the object tracking algorithm using
the proposed and existing template representations were evaluated
using measures based on ground truth data. The proposed template
was proved to be superior to existing template representations.
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