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ABSTRACT

In this paper we propose a novel adaptive filtering
algorithm. Using the Set Theoretic Estimation frame-
work, the algorithm exploits the information given by
the power spectral density of the noise extracted from
the periodogram of filtering error. With this informa-
tion new appropriate sets are built and projections onto
them are computed. The simulations results show that
the algorithm has excellent convergence properties.

1. INTRODUCTION

The problem of adaptive filtering can be interpreted as
one in which an unknown system has to be estimated.
Adaptive filtering has a great number of applications
such as channel equalization, noise cancellation, echo
cancellation, etc. [11].

Set Theoretic Estimation has received considerable
attention for the last 20 years [2]. It has been applied to
a considerable number of problems like image processing
[3], signal restoration [10], etc. The idea behind this
approach is to use certain a priori information about
the object to be estimated. The solution is required to
be consistent with this information. This is the only
requirement to be fulfilled.

The a priori information is used to build sets (pro-
perty sets), in such a way that they contain the true
object with a high degree of confidence. A solution to
the problem can be stated in the following manner: find
one element in the intersection of the sets. This task
could be very difficult to implement in practice [2].

The application of this framework to adaptive filter-
ing has been reported too. In [4], [6], [7], [9] it was pro-
posed to bound the feasibility set (the intersection set
built with the sets representing the pieces of a priori in-
formation) with hyperellipsoids at each time instant. In
[12] a method based on parallel subgradient projection
(PSP) techniques onto convex sets is utilized for recur-
sive estimation of the true system. In [13] an interesting
modification to the PSP algorithm is made, which im-
proves its performance. In those previous works, infor-
mation about additive noise is used for the construction
of the property sets. The algorithms derived in those
works show excellent convergence properties for highly-
colored inputs and reduced number of updates.

This paper proposes a novel adaptive algorithm fo-
llowing the ideas given in [12] and using different pro-
perty sets. These sets use information about the power
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Figure 1: An adaptive filtering problem

spectral density of the noise. The periodogram of the
filtering error plays a fundamental role in the algorithm
for testing the consistency of the successive estimations
with the information about the power spectral density
of the noise.

Throughout the paper, the following notations are
used: RN and CN are real and complex Hilbert spaces
with inner products 〈x,y〉 = xT y and 〈x,y〉 = xHy
respectively, where the superscripts T and H denote
transposition and complex conjugate transposition. For
any nonempty closed convex set C in a Hilbert space
H, the projection operator PC : H → C is defined by
‖x − PC(x)‖ = min

y∈C
‖x − y‖ ∀x ∈ H.

2. PRELIMINARIES

Let w0 =
[

w0
0 w1

0 . . . wN−1
0

]T ∈ RN be an unknown li-
near FIR system. The associated adaptive filtering pro-
blem is shown in Fig. 1. The input signal at time n,

x(n) = [x(n) x(n − 1) . . . x(n − N + 1)]
T ∈ RN pass

through the system giving an output wT
0 x(n) ∈ R.

This output is observed but in this process it usually
appears a noise v(n) ∈ R which will be considered addi-
tive. Thus, each successive input x(n) gives an output
y(n) = wT

0 x(n)+v(n). The idea is to find ŵn+1 to esti-
mate w0. This filter receives the same input x(n), lead-
ing to an output estimation error e(n) = y(n)−ŵT

nx(n).
In the sequel we define the M × 1 output data

vector y(n) = [y(n − M + 1) y(n − M + 2) . . . y(n)]
T

and the N × M input data matrix X(n) =
[x(n − M + 1) x(n − M + 2) . . . x(n)]. It can be de-
fined the M × 1 error vector e(n) = y(n) − XT (n)ŵn.



3. THE SET THEORETIC FORMULATION

3.1 Constructing the property sets

In the Set Theoretic Estimation framework the solution
has to be consistent with the available a priori informa-
tion. In this paper it is assumed that there is some a
priori information about the additive noise. In fact it is
assumed that its power spectral density is known. If a
perfect estimation of w0 is available, ŵn = w0 ∀n, then
v(n) = y(n) − xT (n)ŵn+1 ∀n. It can be proved that
v(n) and y(n) − xT (n)ŵn+1 have the same probability
theoretic properties [1]. Defining the following set:

Sn
k =

{

ŵn+1 ∈ R
N :

1

M
|(y(n)−

XT (n)ŵn+1

)T
sk

∣

∣

∣

2

≤ ξk

}

, (1)

where sk =
[

1 e−j 2πk
M . . . e−j 2πk(M−1)

M

]T

, it could be

known with a probability 0 < Pk < 1 that the true
system w0 is in Sn

k . The probability Pk depends on the
distribution of the noise and on the parameter ξk. It is
easy to see that Sn

k is built by taking the periodogram
at frequency bin k of the vector y(n) − XT (n)ŵn+1.
It is known that the periodogram is a simple statistic
for the spectral density power of a stationary stochastic
process. The set Sn

k is known as a property set [2]. In
the Set Theoretic framework it is reasonable to seek the
solution in this set provided that Pk is close to 1.

3.2 Determining ξk

Strictly, to determine ξk to guarantee that Pk is closed to
1 the noise’s probability distribution has to be known.
This kind of knowledge can be difficult to have. But
if the noise v(n) is white and gaussian with variance
σ2, it can be shown that I0/σ2 and IM/2/σ2 have a

χ2
1 distribution, and 2I1σ

2, . . . 2IM/2−1/σ2 have a χ2
2

distribution, where:

Ik =
1

M

∣

∣vT (n)sk

∣

∣

2
k = 0, 1, . . . , M − 1, (2)

and v(n) = [v(n − M + 1) v(n − M + 2) . . . v(n)]
T
.

For k = M/2 + 1, . . . , M − 1, the results are the
same due to the even symmetry of the periodogram
of real signals. The determination of ξk for a re-
quired probability Pk can be accomplished using chi-
squared tables. Moreover, if v(n) is not gaussian or
white but it is a strongly mixing process [1] with sum-
mable second- and fourth-order cummulant functions
and spectral density g(f) with 0 ≤ fk = k/M ≤
1/2 k = 0, 1, . . . , M/2, it can be shown that I0/g(0)
and IM/2/g(1/2) are asymptotically distributed as χ2

1,
and 2If1/g(f1), . . . 2IfM/2−1

/g(fM/2−1) are asymptoti-

cally distributed as χ2
2. As a result, in the general case,

the sets Sn
k can be built having knowledge of the spectral

density provided that v(n) satisfies the above mentioned
hypothesis.

3.3 Solving the problem

It is required to find a point in Sn
k because this is the

consistency condition that any valid solution has to ful-
fill. Actually, we need to find a point in:

Sn =
M−1
⋂

k=0

Sn
k , (3)

to be consistent with all spectrum information.
{Sn

k }M−1
k=0 are closed and convex sets in a Hilbert space.

It can be proved easily that Sn is also a closed and con-
vex set. Then, the concept of a projection in Hilbert
space can be applied to find a point in Sn given an ar-
bitrarily point in the total space[8]. However, the com-
putation of the projection over Sn can be a formidable
task, while the projections over each Sn

k can be more
easily obtained. The POCS (Projections onto Convex
Sets) method can be utilized to find a point in the in-
tersection of a family of closed and convex sets using
the individual projections [2]. However, its application
in a real time problem which is the nature of adaptive
filtering problem can be difficult or even impossible.

In [12] a general algorithm of potential application
to a real time problem using the individual projections
is derived. It was used with other property sets, but

it can be used with the sets {Sn
k }

M−1
k=0 defined in (1).

Using these sets, the algorithm can be expressed in the
following manner:

ŵn+1 = ŵn + Ln

(

M−1
∑

k=0

λn
kPSn

k
(ŵn) − ŵn

)

, (4)

where PSn
k

is the projector onto Sn
k , λn

k > 0 ∀n, k and
∑M−1

k=0 λn
k = 1 ∀n. The parameter Ln ∈ (0, 2Mn) is a

relaxation parameter[3] and Mn is:

Mn =







∑M−1
k=0 λn

k‖PSn
k

(ŵn)−ŵn‖2

‖
∑M−1

k=0 λn
k PSn

k
(ŵn)−ŵn‖2

if ŵn /∈
⋂

Sn
k

1 otherwise
.

(5)

It can be proved that Mn ≥ 1. In [12] it is shown that
the algorithm has the Fejér-monotonicity property: for

every w∗ ∈ ⋂M−1
k=0 Sn

k :

‖w∗ − ŵn+1‖ ≤ ‖w∗ − ŵn‖. (6)

If we assume that w0 ∈ ⋂M−1
k=0 Sn

k ∀n, the property is
true for w0. These results are still valid taking the pro-
jections onto closed and convex sets Cn

k that satisfy:

Sn
k ⊂ Cn

k and ŵn /∈ Sn
k ⇒ ŵn /∈ Cn

k . (7)

This last result allows the use of computable projections,
if the ones onto the property sets are difficult to obtain.
In view of this last result in [12], the projections are
computed using subgradients of convex functions.



4. THE NEW ALGORITHM

It can be shown that the projections onto the sets
{Sn

k }M−1
k=0 defined in (1) are very difficult to obtain. It

can be possible to follow the same steps that in [12] using
subgradients. However another approach is possible. In
this paper the following sets {Cn

k }M−1
k=0 are considered:

Cn
k =

{

ŵn+1 ∈ C
N :

1

M
|(y(n)−

XT (n)ŵn+1

)T
sk

∣

∣

∣

2

≤ ξk

}

. (8)

These sets are built in CN and have the property (7)
assuming that X(n), y(n) and ŵn are real quantities.

The projections onto the sets {Cn
k }M−1

k=0 for each k can be
computed more easily using the Lagrange multipliers[8]:

PCn
k
(ŵn) = ŵn + αn

k

X(n)sks
H
k e(n)

‖X(n)sk‖2
, (9)

where

αn
k =

{

0 if ŵn ∈ Cn
k

1 −
√

Mξk

|eT (n)sk| otherwise
(10)

Replacing these results in (4), the algorithm is ob-
tained. For the calculation of αn

k it is necessary to check
if ŵn belongs to Cn

k . It is not difficult to show that the
following rule applies:

If
1

M

∣

∣eT (n)sk

∣

∣

2 ≤ ξk ⇒ ŵn ∈ Cn
k . (11)

If
1

M

∣

∣eT (n)sk

∣

∣

2
> ξk ⇒ ŵn /∈ Cn

k . (12)

The equations (10) and (12) show that the periodogram
of the filtering error has to be evaluated for checking
the membership of ŵn to Cn

k (and because of (7), to Sn
k ).

Then the periodogram of the filtering error evaluates the
degree of consistency of ŵn with the information about
the power of the noise at frequency bin k. If this degree
of consistency is high enough there is no need of update
at this frequency bin.

The parameter αn
k controls the update in each fre-

quency k. If αn
k = 0 ∀k at a given n, it is not difficult

to see that ŵn+1 = ŵn. This possible absence of up-
dates has been reported in the literature in others adap-
tive algorithms derived according to the Set Theoretic
Estimation ideas [4], [6], [7], [9]. Significant saving of
computations can be achieved due to this feature of this
adaptive algorithm.

It can be shown that the result in (9) is a complex
vector. This can be a problematic situation since the
final vector ŵn+1 must be real because the true sys-
tem is assumed to be real. In order to handle with this
situation we have proved the following proposition:

Proposition 1 Given (4) and (5) where each pro-
jection is given by (9) and (10) and assuming that
X(n), y(n) and ŵn are real quantities and λn

k−M/2 =

λn
k+M/2 ∀k = 1, 2, . . . , M/2 − 1 with M even, it can be

proved that ŵn+1 is a real vector.

5. NUMERICAL RESULTS

To verify the efficacy of the proposed algorithm, it is
compared with the algorithm in [12] (PSP) and the
APA algorithm, which is a well-established adaptive
algorithm [5] when the input signal is highly-colored.
The true system to be estimated is w0 ∈ R64. The in-
put signal is generated by filtering a white, zero-mean,
gaussian random sequence through a first-order system
G(z) = 1/1 − 0.95z−1. This input is highly-colored.
The noise is white, zero-mean and gaussian with SNR=

10 log10

(

E
[

∣

∣wT
0 x(n)

∣

∣

2
]

/E
[

|v(n)|2
])

=20 dB. The sys-

tem mismatch, 10 log10

(

‖w0 − ŵn‖2/‖w0‖2
)

[dB] ∀n,
is evaluated. The PSP algorithm uses q = 1 and
ρ = (r +

√
2r)σ2 for the parameter that define the cor-

responding property sets [12], where r = 8 and σ2 is
the variance of the noise. The order of the APA algo-
rithm is p = 8 and µ = 1. The regularization of the
APA algorithm take the value of 20 times the power of
the input signal, thus following [5]. The proposed algo-

rithm uses M = 8. The parameters {ξk}M−1
k=0 are com-

puted with chi-squared tables to obtain Pk = 0.99 k =
0, 1, . . . , M − 1. The coefficients λn

k are set equal to
1/M ∀n, k in the proposed algorithm and in the PSP
algorithm. The technique developed in [13] could be
applied to this algorithm to improve its convergence pro-
perties. The curves shown are the result of the ensemble
of 50 independent trials.

In Fig. 2 the proposed algorithm is compared with
the APA algorithm and the PSP algorithm. The pro-
posed algorithm presents almost the same speed of con-
vergence than the APA algorithm with a lower final
error. The PSP algorithm, under this kind of input
signal, shows a lower speed of convergence, but a lower
final error than the APA algorithm. In Fig. 3 the pro-
posed algorithm is tested under different values of M .
The speed of convergence and the final error are im-
proved as this parameter becomes larger. However, the
performance of the algorithm with M = 2 is still good.
The algorithm was tested in other conditions (other in-
put signals, different filter lenght, etc.) but the results
are not shown due to the lack of space.

Finally, we compared the computational cost of the
algorithms. In Fig. 4 we computed the normalized ave-
rage number of “effective” projectors (αn

k 6= 0) per ite-
ration. This could be thought as an estimator of the
probability of computing an “effective” projector at each
iteration. In this simulation, both algorithms had nearly
the same mismatch curve (not shown). As we can see,
the proposed algorithm requires less computations. The
total average number of “effective” projectors for the
PSP algorithm was 32719.92, and for the proposed one,
it was 3022.08.

6. CONCLUSIONS

A novel adaptive algorithm has been proposed in which
information about power spectral density of the noise
is used. The algorithm has a reduced number of up-
dates and shows excellent convergence properties under
highly-colored inputs. This fact make the algorithm
suitable for treating problems like echo cancellation.
The information about the power spectral density of the
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Figure 2: System mismatch for the proposed algorithm
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(r = 8, q = 1) under SNR=20 dB.
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Figure 3: System mismatch for the proposed algorithm
with M=2, M=8 and M=16.

noise can be used to improve the convergence behavior
of the algorithm when the noise is not white.
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