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ABSTRACT

Several pro–active acoustic feedback (Larsen–effect) cancellation
schemes have been presented for speech applications with short
acoustic feedback paths as encountered in hearing aids, but these
schemes fail with the long impulse responses inherent to public ad-
dress systems. We derive a new prediction error method (PEM)
based scheme (referred to as PEM–AFROW) which identifies both
the acoustic feedback path and the nonstationary speech source
model. A cascade of a short– and a long term predictor removes
the coloring and periodicity in voiced speech segments, which ac-
count for the unwanted correlation between the loudspeaker signal
and the speech source signal. The predictors calculate row opera-
tions which are applied to pre–whiten a least squares system, which
is then solved recursively by means of e.g. NLMS or RLS algo-
rithms. Simulations show that this approach is indeed superior to
earlier approaches whenever long acoustic channels are dealt with.

1. INTRODUCTION

Acoustic feedback, also referred to as the Larsen–effect (howling)
occurs in microphone–amplifier–loudspeaker–room systems when
the loop gain is larger than one at a frequency where the loop phase
is a multiple of 2π .

A conventional solution consists of inserting notch filters into
the signal path, thus decreasing the loop gain at those frequencies
for which the problem arises. There are several disadvantages to
this approach : the system is reactive (the howling phenomenon
occurs for about 0.5 seconds before it is detected), the desired signal
is distorted by the notch filters, and the ’reverb–like’ sound which
occurs in a system which is marginally stable is not suppressed.

In this paper, we will focus on single channel acoustic feed-
back cancellation (AFC) schemes as depicted in Figure 1. This
setup does not exhibit the disadvantages summarized above. The
estimate of the filter coefficient vector f(k) of the acoustic path
F(q,k) = f(k)T q = f0q0 + . . .+ fN−1q−N+1 from the loudspeaker
to the microphone is f̂(k). Here q−1 is the delay operator. The N
coefficients of f̂(k) are copied at regular time instants to the can-
cellation filter f̂0(k). The loudspeaker signal u(k) is filtered by the
room impulse response f(k) and also by the cancellation filter f̂0(k).
The difference between the cancellation filter output and the micro-
phone signal is the error signal e(k) which should then be equal to
the speech source signal v(k) (for a correct model f̂(k)). In Figure
1, g is the amplifier gain, y(k) is the microphone signal, u(k) = ge(k)
is the loudspeaker signal, f is the feedback path impulse response,
v(k) is the (speech) source signal, w(k) is the excitation sequence of
the source signal, and H(q,k) = (1+a1(k)q−1 + ...+aP(k)q−P)−1

is a time varying autoregressive (AR) speech model of order P. The
coefficient vector of the numerator is a(k). Finally, the q−D block
in Figure 1 is a forward delay, which is often unavoidable in digi-
tal implementations (buffers for AD/DA-converters, ...) , but which
will be exploited further on.

An acoustic echo cancellation (AEC) like approach has been
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Figure 1: Acoustic feedback cancellation scheme

used for AFC in e.g. [1, 2]. The main complication in AFC com-
pared to the direct identification-approach used in AEC is that in
AFC, one can not assume that the speech source signal v(k) is un-
correlated with the loudspeaker signal u(k). Ignoring this, and ap-
plying direct identification anyway, would result in a bias in the
identified room impulse response [3, 4]. This bias can be removed
using the prediction error method (PEM), which incorporates a
speech source signal model into the identification procedure [5].
This has been studied mainly in the hearing aids context where the
feedback path impulse response is less than 5 msec. In this paper,
we focus on public address (PA) systems, where the feedback path
typically has a much longer impulse response, e.g. up to 500 msec,
and hence an alternative approach will be needed.

Speech, although highly nonstationary over longer time peri-
ods, is often considered to be stationary during short frames of ca.
20 msec (e.g. 160 samples at 8 kHz). Within these frames, it can
be whitened by a cascade of a short term predictor (STP) and a
long term predictor (LTP). It is required to use data windows of
several seconds to estimate the room impulse response, over the
length of which the speech signal will be nonstationary. This con-
trast between the long stationarity period of the long room impulse
response and the short stationarity period of the short term predic-
tion speech model, and the corresponding number of data points
which are available to identify each of them, is fundamental to the
problem of acoustic feedback cancellation for public address sys-
tems.

In this paper, we introduce a new technique which estimates the
speech model over short time windows (over which it is stationary),
and the room impulse model over longer time windows (which is
necessary because the number of parameters is much larger). The
speech model is not required to be stationary during the complete
room impulse response. Our scheme will also include a long time
predictor which models the periodicity in w(k). We will show that
this scheme outperforms existing methods.

This paper is organized as follows. In section 2, we introduce
our new procedure. It uses alternating updates of the speech model
and the adaptive filter which models the room. An important dif-
ference with [5] is that in our algorithm the speech model provides
row transformations, which are then applied to pre–whiten the least



squares system from which the room response estimate is com-
puted. Hence the name ’prediction error method based adaptive
filtering with row operations’ (PEM-AFROW). In section 3, com-
plexity figures are given, in section 4 we show simulation results,
and section 5 contains the conclusion of the paper.

2. PEM-AFROW

It is instructive to first assume that w(k), the excitation sequence,
is a white noise sequence. This means that we model the speech
source signal as a time varying AR (TVAR) signal of order P, i.e.
v(k) = a1v(k−1)+ ...+aPv(k−P)+b(k)w(k). Here b(k) accounts
for energy variations in the excitation signal. Later on, we will use
a more general model for w(k). We start from the minimization
problem

min
f̂

∥∥U(k)f̂(k)−y(k)
∥∥ , (1)

with

U(k) =


u(k) u(k−1) · · · u(k−N +1)

u(k−1)
...

...
. . .

...
u(0) 0 · · · 0

 .

and y(k) = ( y(k) . . . y(0) )T . This minimization results in a
biased estimate f̂(k) for f(k) since y(k) contains the ’disturbance’
v(k) which is correlated with u(k) : y(k) = U(k)f(k) + v(k). If
we have an estimate Â(q,k) of H−1(q,k) available at each time in-
stant, with coefficients â(k) ∈ RP, we can apply a pre-whitening by
forming the matrix

Â(k) =


âT (k) 0 0 0

0 âT (k−1) 0 0
0 0 âT (k−2) 0

0 0 0
. . .

 .

It is important to note that each row in the matrix is shifted over one
position compared to the previous row, hence that the second row
has one zero in front of the transposed vector âT (k− 1) of dimen-
sion P+1, the third row has two zeros, ... . We can now modify the
minimisation problem (1) to

min
f̂

∥∥Â(k)U(k)f̂(k)− Â(k)y(k)
∥∥ . (2)

We now introduce the assumption that h(k) is constant during
frames of 20 msec. This means that we rewrite

Â(k) =



âT
i 0 0 0

. . .
0 âT

i 0 0
0 0 âT

i−1 0

0 0 0
. . .


↑
L
↓
↑
L
↓

, (3)

with e.g. L = 160 for a sampling rate of 8 kHz, and i = dk/Le , the
first integer larger than k/L. This means that i is the frame index.

We now decouple the non–linear equations in order to also cal-
culate the estimates âi and the room impulse response f̂(k) in an
alternating fashion. In the first step, a previous estimate f̂(k) is
used to filter a frame of data (20 msec). The filter output is sub-
tracted from the corresponding microphone samples, resulting in
d(k) = y(k)−U(k)f̂(k). Note that if the estimate f̂(k) were exact,
then d(k) = v(k).

Linear prediction is then performed on this d(k) (Levinson-
Durbin) algorithm to find the linear prediction error filter âi. In
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Figure 2: PEM-AFROW-identification. In the first phase, â is esti-
mated in the left hand side, it is then copied to the right hand side,
where the estimation of f̂ is performed on the same data frame. Fi-
nally, f̂ is copied to the left hand side and used in the next frame.

the second step, (2) is solved for f̂(k) with the updated (fixed) value
for âi. This gives a better estimate f̂(k) for f(k). These two steps
can be iterated on the frame. Since none of these two steps will in-
crease ε{‖e(k)‖} = ε{

∥∥Â(k)U(k)f̂(k)− Â(k)y(k)
∥∥}, the algorithm

will converge to a (possibly local) minimum of (2).
In order to reduce the complexity, we will perform only one

iteration per frame. The minimization problem (2), with a fixed
value of Â(k), can be solved for f̂(k) by means of any adaptive
filtering algorithm. We have implemented this both using a QRD–
based RLS algorithm and an NLMS algorithm. The input vector is
in both cases

uT
w(k) = aT

i

 uT (k)
...

uT (k−P+1)

 , i = dk/Le , (4)

Here u(k) = ( u(k) . . . u(k−N +1) )T . The desired sig-
nal input (right hand side sample) is aT

i y(k) with y(k) =
( y(k) . . . y(k−P+1) )T . Since u(k) is a shifted version
of u(k − 1) with one sample prepended, and ai remains constant
during a frame of L samples, uw(k) will be a shifted version of
uw(k−1) with one sample prepended. So inside a frame, only one
vector multiplication has to be performed to calculate uw(k). On
the other hand, at the start of each frame, a matrix multiplication
should be performed to calculate all elements of uw(iL) as follows
:

uT
w((i−1)L+1) = aT

i

 uT ((i−1)L+1)
...

uT ((i−1)L−P+2)

 .

The identification algorithm is shown in Figure 2. For real time
implementation, the scheme involves a delay of one frame for the
update of f̂(k), since ai can only be calculated at time iL. Note that
this is not a problem since we have assumed that the room impulse
response is constant over more than one frame. The delay is effec-
tively implemented as a delay line for the input samples u(k) before
they are fed to equation (4).

Once the room impulse response has been identified, the next
step is to insert the cancellation filter into the feedback loop scheme
by setting f̂0(k) = f̂(k), e.g. at regular time intervals (see Figure 1).
It is important to notice that this obviously influences the adaptation.
The input data used for the identification procedure then depend on
the current model estimate, which is reminiscent of a non–linear
optimization problem. This dependency is effectively ignored in



our implementation (it is also ignored in adaptive control theory
[6]).

Experiments indicate that updating the cancellation filter reg-
ularly is beneficial to the identification process. This can be ex-
plained because a time variant forward path (from microphone to
loudspeaker) decreases the correlation between the loudspeaker sig-
nal and the speech source signal.

At this point, the difference between PEM–AFC and PEM-
AFROW becomes obvious : in PEM–AFROW the stationarity of
the speech model is explicitly assumed in the minimization prob-
lem by stating that âi remains constant during a frame (see equation
(3)). At the start of each frame, the full input vector uT

w(k) is recal-
culated. In PEM–AFC, this assumption of stationarity is not made
for the optimisation problem itself (the optimisation is decoupled in
two completely independent adaptive filters), and the full input vec-
tor is never recomputed after a change of a(k) in PEM–AFC, which
can only be justified for short impulse responses.

For the TVAR-signals we studied up till now (where w(k) was
a white noise sequence) , the pre–whitening step removes all of the
correlation between the loudspeaker signal and the source signal.
However, the excitation sequence w(k) for voiced speech is period-
ical (glottal excitation). Hence the input signal u(k) of the adaptive
filter is — due to this periodicity — still correlated with the source
signal, even after pre–whitening.

A standard approach in speech coding [7] is to cascade a short
term predictor (STP) of order P (e.g. 12) which models the vocal
tract characteristics,

uT
sw(k) = aT

i

 uT (k)
...

uT (k−P+1)

 , i = dk/Le , (5)

with a long term predictor (LTP) with only one tap and a lag equal
to the pitch period to model the periodicity, ulsw(k) = usw(k) +
b jusw(k−M j), j =

⌈
k/Llt p

⌉
.The LTP can be estimated in windows

of 20 msec (which is the frame length L of the short term pre-
dictor), with a 10 msec overlap. This means that the LTP model
is estimated each 10 msec, which corresponds to Llt p samples
(at 8 kHz, Llt p = 80). In order to estimate the LTP, we mini-

mize E j == minε{
∥∥usw(k−M j)b j +usw(k)

∥∥2}. The solution fol-
lows from ε{usw(k−M j)usw(k−M j)}.b j = ε{usw(k)usw(k−M j)}.
We can now estimate the one long term prediction filter tap b j =
(uT

sw(k−M j)usw(k−M j))−1uT
sw(k)usw(k−M j). In this equation

usw(k) = ( usw(k) . . . usw(k−L+1) )T . The variance of the
long term prediction residual is

E j = uT
sw(k)usw(k)−

(uT
sw(k)usw(k−M j))2

uT
sw(k−M j)usw(k−M j)

This is evaluated for different values of M j,i = Mmin...Mmax (the
lag), and the parameters (M j,b j) which result in the minimum value
of E j are chosen as the predictor for long term prediction frame j.

It is important to note that by applying long term prediction, the
actual order of the speech source model is the lag of the long term
model plus the order of the short term model, and as stated in [5], to
guarantee identifiability, the forward delay must be larger than the
order of this model. In practice it does not matter too much where
this forward delay is implemented : often a latency D is introduced
by buffering after and before the A/D and D/A–converters, or even
— due to the relatively low velocity of sound waves — from the
distance between the loudspeaker and the microphone.

In section 2 it was mentioned that at frame borders, the whole
input vector has to be recalculated by means of a matrix multipli-
cation. It must be noted that when long term prediction is added
to the algorithm, this matrix multiplication has to be performed not
only at frame borders of the short term predictor, but also at frame
borders of the long term predictor.

3. COMPLEXITY

The complexity is evaluated when the algorithm is operated with
an NLMS adaptive filter. In these complexity expressions a mul-
tiplication and an addition are counted as two separate floating
point operations. A ’search range’ Mmin to Mmax has to be spec-
ified for the lag of the long term predictor (typically Mmin = 20,
Mmax = 160 at 8 kHz). The complexity depends on these param-
eters through dM = Mmax −Mmin. For the complexity calcula-
tion we assume one tap long term prediction, and we also assume
that the frames do not overlap. Since at each frame border the full
NLMS input vector is recalculated, the complexity per sample is
8(N +P)+4dM+5+((2P+4)N +4P2−5P+15)/L floating point
operations. The algorithm was implemented in C++ on a Pentium
III, 1GHz PC without any specific optimization effort, and runs in
real time with N = 2000, P = 12, L = 160 at 16 kHz sampling rate,
with long term prediction overlap of 80 samples. In case of no over-
lap for the long term predictor, the number of floating point opera-
tions per second would be 272.106.

4. SIMULATION RESULTS

In Figure 3 the error norm
∥∥f(k)− f̂(k)

∥∥is plotted as a function of
time. Note that only the identification performance is shown, which
means that the cancellation filter is not inserted into the scheme dur-
ing adaptation. The signal is a sentence uttered by a male voice, the
acoustic path has 1000 taps. We use NLMS for the adaptive filter,
since in a practical implementation this would be the adaptive algo-
rithm of choice (due to complexity constraints). Note that the per-
formance of all algorithms is dependent of the energy ratio (’signal
to noise ratio’) of the loudspeaker component arriving on the mi-
crophone versus the source signal arriving on the microphone (the
source signal should thus be interpreted as ’noise’). The simulations
shown here were done for one specific situation where this ratio was
-11 dB, but experiments show a similar performance difference be-
tween the algorithms for other ratios. The short time prediction
frame length is 160 samples, the long term prediction frame overlap
is 80 samples, the minimum– and maximum lag for the long term
predictor are 20 and 160 respectively. the sampling frequency is
8 kHz. The speech model order in PEM–AFROW and PEM–AFC
is 12. The forward delay is 200 taps in both PEM–AFROW and
PEM–AFC (note that the PEM–AFC version of [8] does not explic-
itly incorporate a forward delay, but the theoretical analysis of [5]
shows that this is required for correct performance, hence we added
it to the system). We also show the performance of PEM-AFROW
with the long term predictor disabled, because PEM–AFC also does
not use a long term predictor.

The NLMS step size is 0.01 for PEM–AFROW, while PEM–
AFC, which uses a modified NLMS algorithm and hence a differ-
ent definition of the step size, was tuned to give the same initial
convergence speed. This allows us to make a fair comparison of
the resulting bias/variance of the solution. Direct identification is
seen to give poor results. PEM–AFC performance decreases with
path length, and for N = 1000, its behaviour is only slightly better
than direct identification behaviour (i.e. when the room impulse re-
sponse is identified as if the system were operating in open loop).
PEM–AFROW does perform well also for long paths. The bad per-
formance of PEM-AFC is to be attributed to the stationary speech
model assumption, which is not fulfilled for long paths.

5. CONCLUSION

We have introduced a new algorithm, referred to as PEM–AFROW,
which allows for acoustic feedback cancellation in setups with long
acoustic paths. It uses a speech source model with short– and long
term prediction. Not only the howling phenomenon is suppressed
but also the reverberation–like sounds, which become audible in
the marginal stability region. The main differences with existing
schemes are that our algorithm incorporates a long term predic-
tion filter which removes periodicity in the short term speech signal
residual, and that we do not assume stationarity of the speech signal
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Figure 3: PEM–AFROW with and without long term prediction ver-
sus direct identification for long paths (1000 filter taps).

over the length of the data window on which the acoustic path is
identified. PEM-AFROW hence performs very well for long acous-
tic paths, while it is even slightly better than the existing methods
for short path applications. Thanks to the low complexity, the algo-
rithm can easily be implemented in real time.
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