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ABSTRACT

This paper presents an overview of recent advances in partial update
and sparse adaptive filters. Following an introduction to the no-
tion of partial updating, several application examples are presented
in the areas of echo cancellation, blind equalization and multiuser
detection. These examples demonstrate the capability of partial-
update algorithms to maintain a performance close to their compu-
tationally more demanding full-update counterparts. The paper also
discusses recently proposed techniques for sparse system identifica-
tion, as well as the concept of joint partial and sparse updating for
adaptive identification of sparse systems.

1. INTRODUCTION

Identification of sparse and/or long discrete-time systems has al-
ways been a challenging problem. In many applications, includ-
ing acoustic/network echo cancellation and channel equalization,
the system to be identified can be characterized as sparse and/or
long. Partial update adaptive filtering algorithms were proposed to
address the large computational complexity associated with long
adaptive filters. However, the initial partial update algorithms had to
incur performance losses, such as slow convergence, compared with
full-update algorithms because of the absence of clever updating ap-
proaches. More recently, better partial update techniques have been
developed that are capable of minimizing the performance loss. In
certain applications, these partial update techniques have even been
observed to produce improved convergence performance with re-
spect to a full-update algorithm. The potential performance gain
that can be achieved by partial-update algorithms is an important
feature that was not recognized earlier.

Sparse system identification is a vital requirement for fast con-
verging adaptive filters in, for example, certain specific deploy-
ments of echo cancellation. Recent advances based on proportion-
ate update schemes have been used to good effect in network echo
cancellation for VoIP gateways (to take account of unpredictable
bulk delays in IP network propagation), and acoustic echo cancella-
tion (to handle the unknown propagation delay of the direct acoustic
path). Several new techniques are emerging in the current literature.
This paper aims to summarize the recent advances in partial-update
and sparse adaptive filtering algorithms. Within the limits of the
available space, some key algorithms and their applications are re-
viewed.

2. PARTIAL UPDATE ADAPTIVE FILTERS

In adaptive filtering algorithms the complexity increases with the
number of coefficients that have to be updated every time a new
input sample comes in. The complexity of adaptation is mainly
due to multiplications in the update process. A straightforward ap-
proach to complexity reduction is to update a small number of filter
coefficients rather than the entire filter at every iteration. Usually
a compromise has to be made between affordable complexity and
desired convergence speed.

2.1 Time-Domain Selective Partial Update Adaptive Filters
Consider a stochastic-gradient-descent adaptive filtering algorithm
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where h(n) is the N × 1 filter coefficient vector at time n, µ is the
stepsize, e(n) is the error signal, and x(n) is the N × 1 filter input
regressor vector. In partial updating, the adaptation algorithm (1) is
replaced by hi(n + 1) = hi(n) + µe(n)xi(n), i ∈ {1, . . . , P}
where i needs to be selected at every iteration n. The chief advan-
tage of partial updating is reduced complexity. Its main disadvan-
tage is the potential reduction in convergence speed, the extent of
which depends on how i is chosen.

Several partial update algorithms have been proposed in the lit-
erature. A summary of the key algorithms is provided below:
• Max-NLMS [1]: The NLMS algorithm derived from a con-

strained optimization problem by using the `∞ norm rather than
`2 in the optimization criterion.

• Sequential and periodic partial-update LMS [2]: No selec-
tion criterion is used; the block index i is changed sequentially
or periodically at every iteration.

• M -max NLMS [3]: A selection criterion is obtained from the
minimization of a modified a posteriori error expression. Filter
coefficients corresponding to the filter inputs with the largest
squared `2 norm are updated.

• Selective-block-update NLMS [4]: Extension of the M -max
NLMS algorithm to coefficient blocks to reduce memory re-
quirements.

• Selective-partial-update NLMS [5]: A selection criterion is
obtained from the solution of a constrained optimization prob-
lem. The resulting algorithm has a different update term to the
M -max NLMS algorithm, but uses the same selection criterion.

• Data-selective partial-update NLMS [6]: Set-membership fil-
tering fused with selective partial updating.

2.2 Transform-Domain Selective Partial Update LMS
The selective-partial-update transform-domain-LMS (SPU-TD-
LMS) algorithm updating B coefficient blocks out of P at every
iteration is given by [7]

wI(n + 1) = wI(n) + µe(n)Λ−2
I v∗I(n),

I = arg max
J

vH
J (n)Λ−2

J vJ (n). (2)

The selection criterion that yields I where I = {i1, i2, . . . , iB}
is a B-subset (subset with B members) of the set {1, 2, . . . , P}
ensures that the best convergence performance is achieved under
the constraint of partial updating. In (2), the coefficient vector
w(n), the power matrix Λ2 and the transformed regressor vector
v(n) = Tx(n) are partitioned into P blocks with wI(n), Λ2

I and



 

x(n) 

e(n) d(n) 
y(n) 

h(n) hopt (n) 

UNKNOWN 
ECHO SYSTEM 

ADAPTIVE ECHO 
CANCELLER 

Figure 1: Adaptive echo cancellation structure.

vI(n) augmented accordingly. Complexity reduction for general-
ized subband decomposition adaptive filters is also possible by way
of selective partial updating [7].

3. APPLICATIONS

3.1 Acoustic Echo Cancellation

In acoustic echo cancellation problems the acoustic echo path is
often modelled as an FIR filter d(n) = hT

opt(n)x(n) + ν(n) (see
Fig. 1) where T denotes matrix transpose, d(n) is the echo signal,
hopt(n) is the acoustic echo path, x(n) is the loudspeaker signal
and ν(n) is the additive noise (not shown in the figure). In the echo
cancellation examples presented in this section, x(n) is a signal
with speech-like spectrum and the acoustic echo path is a measured
car echo impulse response of length 256. The signal-to-noise ratio
of the echo signal is 30 dB.

The TD-LMS was implemented using a 225-point discrete co-
sine transform (N = 225). The selective partial update parame-
ters were set to P = 225 and B = 45, i.e., 1/5th of the fil-
ter coefficients are updated per iteration. Fig. 2 shows the time-
averaged convergence curves for TD-LMS, SPU-TD-LMS and SB-
TD-LMS (sequential-block TD-LMS). Although both SPU-TD-
LMS and SB-TD-LMS update 1/5th of the coefficients, the con-
vergence speed of SB-TD-LMS is very slow compared to that of
SPU-TD-LMS.

3.2 Blind Channel Equalization

The constant modulus algorithm for blind channel equaliza-
tion aims to estimate the equalizer parameter vector θ(n) =
[θ0(n), θ1(n), · · · , θN−1(n)]T such that, for a given equalizer in-
put vector x(n) = [x(n), x(n − 1), · · · , x(n − N + 1)]T , the
equalizer output signal y(n) = θT (n)x(n) satisfies the equality
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Figure 2: Converge comparison for TD-LMS and SPU-TD-LMS in
acoustic echo cancellation example.
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Figure 3: Converge comparison for blind channel equalization al-
gorithms NGA and SPU-NGA.

|y(n)|2 = R2 ∀n where R is a constellation-dependent dispersion
factor.

Partition the regressor vector and the equalizer parameter vector
into P blocks:

x(n) =
�
xT

1 (n) · · · xT
P (n)

�T
θ(n) =

�
θT

1 (n) · · · θT
P (n)

�T
.

Consider the following constrained minimization problem

min
1≤i≤P

min
θi(n+1)

‖θi(n + 1)− θi(n)‖2
2 (3a)

subject to θT (n + 1)x(n) = y(n)(R2 − |y(n)|2 + 1) (3b)

where the constraint on the adapted equalizer parameters θ(n + 1)
is a “soft” constraint in that it does not force the equalizer output to
strictly satisfy the constant modulus criterion.

The recursive algorithm that solves (3) is given by

θi(n + 1) = θi(n) + µNGA
y(n)(R2 − |y(n)|2)

‖xi(n)‖2
2

xi(n),

i = arg max
1≤j≤M

‖xj(n)‖2
2. (4)

which we refer to as the selective-partial-update normalized Godard
algorithm (SPU-NGA). In T/2-spaced equalization, the communi-
cation channel is modelled as two subchannels with outputs x1(n)
and x2(n). The subchannel outputs are applied to subequalizers
with N/2 × 1 parameter vectors θ1(n) and θ2(n). Expressing
the regressor vector as x(n) = [xT

1 (n), xT
2 (n)]T and the equal-

izer parameter vector as θ(n) = [θT
1 (n), θT

2 (n)]T , which are both
N -dimensional vectors, SPU-NGA given by (4) can be used for
fractionally-spaced equalization with no modification.

We have simulated the full-update NGA, SPU-NGA and
sequential-block NGA (SB-NGA) algorithm for the following T/2-
spaced channel with N = 4 and P = N :

h = [−0.2,−0.3, 0.4, 0.1,−0.35,−0.15,−0.005,−0.002]T .

The mean-square error (MSE) values, averaged over 100 simula-
tions, are shown in Fig. 3. Note that the SPU-NGA has a compa-
rable convergence rate to the full-update NGA while the SB-NGA
exhibits much slower convergence.

3.3 Blind Multiuser Detection
The synchronous DS-CDMA signal model for a K-user system us-
ing binary phase shift keying (BPSK) modulation is

r(i) =

KX
k=1

Akbk(i)sk + n(i) (5)
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Figure 4: NLMS vs SPU-NLMS in blind MUD (N = 127).

where r(i) is the received signal vector at the ith symbol interval,
Ak is the received signal amplitude for user k, bk(i) = ±1 is the
ith symbol of user k, sk is the normalized signature (scrambling
code) of user k N with period N , and n(i) ∼ Nc(0, σ2IN ) is the
additive complex Gaussian channel noise.

The minimum output energy (MOE) blind linear multiuser de-
tector for user 1 is given by [8]:

m = s1 + P arg min
x∈CN

E{‖(s1 + Px)Hr(i)‖2} (6)

where P = I − ssH and H denotes Hermitian. Partition x(i) and
P into P blocks:

x(i) =
�
xT

1 (i) · · · xT
P (i)

�T
, P = [P 1 · · · P P ] .

(7)
For the sake of simplicity, assume that Ak and n(i) are real. Then
the solution of

min
1≤j≤P

min
(s1+P x(i+1))T r(i)=0

‖xj(i + 1)− xj(i)‖2 (8)

gives the SPU-NLMS algorithm for blind multiuser detection

xj(i + 1) = xj(i)− µSPU
(s1 + P 1x1(i))

T r(i)P T
j r(i)

‖Pr(i)‖2
,

j = arg max
1≤m≤B

‖P T
mr(i)‖2.

(9)

The SPU-NLMS was simulated for a system with K = 10
users, six 10 dB multiple access interferences (MAIs), three 20 dB
MAIs, and the desired signal to ambient noise ratio of 20 dB. The
signature sequences are m-sequences with period N = 127. We
set P = N , i.e., only one coefficient out of N is updated at each
iteration. It was observed that the SPU-NLMS algorithm not only
performed as well as the full-update NLMS algorithm, but it also
outperformed the full-update NLMS algorithm in some cases. The
convergence curves for the NLMS and the SPU-NLMS are shown
in Fig. 4.

4. ADAPTIVE FILTERS FOR SPARSE SYSTEM
IDENTIFICATION

An impulse response (or a signal) can be considered “sparse” if a
large fraction of its energy is concentrated in a small fraction of its
duration. Adaptive system identification is a particularly challeng-
ing problem for sparse systems.

An application of sparse system identification which is of cur-
rent interest is packet-switched network echo cancellation. The in-
creasing popularity of packet-switched telephony has led to a need
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Figure 5: An example of a sparse impulse response.

for the integration of older analog systems with, for example, IP
or ATM networks. Network gateways enable the interconnection
of such networks and provide echo cancellation. In such systems,
the hybrid echo response is delayed by an unknown bulk delay due
to propagation through the network. The overall effect is therefore
that an “active” region associated with the true hybrid echo response
occurs with an unknown delay within an overall response window
that has to be sufficiently long to accommodate the worst case bulk
delay. The example in Fig. 5 shows a sparse system with an overall
response window of 128 ms duration with an active region con-
taining a hybrid response of 12 ms duration. It may be necessary
in practical systems for the echo cancellation algorithm to identify
and cancel the effect of, for example, up to three independently de-
layed hybrid echo responses, each of up to 16 ms duration, within
an overall window of, say, 128 ms. Such multi-hybrid responses
occur in conference calls.

It has been shown [9] that direct application of NLMS [10] to
sparse system identification in the context of, for example, echo
cancellation gives unsatisfactory performance when the echo re-
sponse is sparse. This is because the adaptive algorithm has to op-
erate on a relatively long filter, and because of the coefficient noise
that will occur during adaptation for the near-zero-valued coeffi-
cients in the inactive regions.

To address this problem, the concept of proportionate NLMS
(PNLMS) was introduced in the context of echo cancellation by
Duttweiler [11] and Benesty et al [12]. In PNLMS each coefficient
is adapted with step-size proportional to its magnitude as given by

e(n) = d(n)−
L−1X
l=0

hl(n)x(n− l) (10a)

γmin(n) = ρ max{δp, |h0(n)|, |h1(n)|, . . . , |hL−1(n)|} (10b)

γl(n) = max{γmin(n), |hl(n)|}, 0 ≤ l < L (10c)

gl(n) =
γl(n)

1
L

PL−1
i=0 γi(n)

, 0 ≤ l < L (10d)

G(n) = diag{g0(n), . . . , gL−1(n)} (10e)

h(n + 1) = h(n) +
µ G(n)

xT (n)G(n)x(n) + δPNLMS
x(n)e(n).

(10f)
where δPNLMS is the regularization constant and L is the length of
the adaptive filter. Typical values for the algorithm constants are
given as δp = 0.01 and ρ = 5/L. At initialization h(n) = 0,
the errors in the large coefficients are dominant. In subsequent it-
erations, PNLMS uses proportionately high step-sizes for these co-
efficients, obtaining fast initial reduction in error. Proportionately
small step-sizes are employed for the small coefficients in the in-
active regions. Significant performance improvements have been



reported using PNLMS for sparse system identification. The perfor-
mance for non-sparse system can however be relatively poor. In ad-
dition, PNLMS performance can be poor when the unknown system
is time-varying such that coefficients cross zero. Close to the zero-
crossing, inappropriately small step-sizes are employed by PNLMS
and tracking performance suffers.

Improvements to the original proportionate scheme have been
recently developed. In [13] the PNLMS++ scheme switches be-
tween PNLMS and NLMS updates, for example, for alternate iter-
ations. The Improved PNLMS algorithm (IPNLMS) is presented in
[14] as

kl(n) =
1− α

2L
+ (1 + α)

|hl(n)|
2‖h(n)‖1 + ε

l = 0, 1, . . . , L− 1

(11a)
K(n) = diag{k0(n), . . . , kL−1(n)} (11b)

h(n + 1) = h(n) +
µ K(n)

xT (n)K(n)x(n) + δIPNLMS
x(n)e(n)

(11c)
where δIPNLMS is the regularization parameter and ε is a small pos-
itive constant to avoid division by zero. Here, a mix of PNLMS
and NLMS updating is employed at every iteration with the amount
of each type of update controlled by α. IPNLMS has the advan-
tage of consistently high performance even if the unknown system
is not strongly sparse. It has been shown in [15] that the IPNLMS
algorithm is an approximation of the exponentiated gradient algo-
rithm EG± [16]. The IIPNLMS algorithm [17] extends the con-
cept of IPNLMS to enable the amount of proportionate and non-
proportionate updating to be controlled independently for each co-
efficient. A block frequency domain version of IPNLMS, known as
IPMDF, has also been proposed [18] and is based on multi-delay
filtering [19].

In [20], the Sparse Partial Update NLMS algorithm
(SPNLMS) is developed in which coefficients hl are only up-
dated if |xl(n)hl(n)| ∈ M maxima of |x(n). ∗ h(n)| for l =
0, 1, . . . , L− 1 where .∗ represents the element-by-element vec-
tor product. Although the SPNLMS algorithm does not directly
employ proportionate updating, it exploits sparseness in both the
echo response and the input signal since updating of a particular
coefficient will be avoided if either the tap-input sample or the co-
efficient are sufficiently small. The same authors in [21] consider
how to specify the relationship between coefficient magnitude and
step-size for optimal convergence rate. In PNLMS, linear propor-
tionality is used. It is shown that optimal convergence is achieved
when all coefficients attain the vicinity of their optimal value in the
same number of iterations following initialization and to achieve
this a non-linear relationship is required. The µ-law PNLMS algo-
rithm (MPNLMS) is subsequently formulated and fast convergence
demonstrated.

5. CONCLUSION

We have reviewed the latest developments in partial update and
sparse adaptive filter algorithms. These two topics were consid-
ered jointly because several of the concepts are common to both;
indeed, joint algorithms are starting to be proposed in the literature.
The chief application areas of partial update and sparse adaptive
filters are acoustic/network echo cancellation and channel equal-
ization. New application areas have also been emerging such as
CDMA multiuser detection. The paper illustrated the potential per-
formance improvement that can be achieved by selective partial up-
dates and sparse updates.
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