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ABSTRACT
We develop a novel algorithmic representation of textures

using the statistics of multiple spectral components of im-
ages. Histograms of filter responses are viewed as elements
of a non-parametric statistical manifold, and local texture
patterns are compared using a geodesic metric derived from
Riemannian information geometry. Several region-based im-
age segmentation experiments are carried out to test the pro-
posed representation and metric. This representation of tex-
tures is applied to the development of a spectral cartoon
model of images.

1. INTRODUCTION

Since the introduction of the discrete cartoon model of im-
ages by Geman and Geman [6] and Blake-Zisserman [3], and
its continuous analogue by Mumford and Shah [10], many
variants followed and have been applied to a wide range of
image processing tasks [4]. In these models, an image is
typically viewed as composed of two basic elements: (i) a
cartoon formed by regions bounded by sharp edges, within
which the variation of pixel values is fairly smooth; (ii) a tex-
ture pattern within each region, which is frequently modeled
as white noise. A drawback in such approaches is the texture
model adopted; the view that texture is not noise, but some
form of “structured clutter” is becoming prevalent. To ad-
dress this problem, models such as the spectrogram model
[9, 15] have been proposed (see also [7]), but they only cap-
ture texture properties partially. A common strategy in tex-
ture analysis has been to decompose images into their spec-
tral components using bandpass filters and utilize histograms
of filter responses to represent textures. Zhu et al. [14] have
shown that marginal distributions of spectral components are
sufficient to characterize homogeneous textures; other stud-
ies of the statistics of spectral components include [12, 5, 13].
Experiments reported in [8] offer empirical evidence that the
same applies to non-homogeneous textures if boundary con-
ditions are available; that is, enough pixel values near the
boundary of the image domain are known.

In this paper, we model textures using histograms of
spectral components viewed as elements of a non-parametric
information manifold. Geodesic distances in this manifold
are used to quantify texture variation and divergence. Sev-
eral region-based image segmentation experiments are car-
ried out to test the representation and metric. We also in-
troduce a new multi-scale spectral cartoon model of images
based on this information theoretical representation of tex-
tures. The paper is organized as follows. In Sec. 2, we give
a brief description of the information manifold. Texture rep-
resentation is discussed in Sec. 3, followed by experimental

results in Sec. 4. The spectral cartoon model is introduced in
the last section.

2. INFORMATION MANIFOLDS

We are interested in a non-parametric statistical manifold P
formed by all positive probability density functions (PDFs)
p : I → R+ satisfying appropriate integrability conditions.
Here, I ⊂ R is a fixed finite interval, which after normal-
ization will be assumed to be [0,1]. The manifold P will be
equipped with an information-theoretic geometric structure
which, among other things, will allow us to quantify varia-
tions and dissimilarities of PDFs. Such infinite-dimensional
statistical manifold has been constructed by Pistone and
Sempi in [11].

Each tangent space TϕP can be equipped with a natural
inner product 〈 , 〉

ϕ
. Although a Hilbert-Riemannian struc-

ture might seem to be the natural geometric structure on P
to expect, for technical reasons, one is led to a manifold lo-
cally modeled on Banach spaces. Since, in this paper, we are
primarily interested in the computational aspects of informa-
tion geometry, we construct finite-dimensional analogues of
P by sampling probability density functions uniformly at a
finite set of points under the assumption that they are contin-
uous. Then, arguing heuristically, we derive an expression
for the inner product on the tangent space TϕP, which in-
duces a Riemannian structure on the finite-dimensional, non-
parametric analogue of P. Geodesic distances in these man-
ifolds will be used to quantify divergence of PDFs. From
the viewpoint of information theory, the geodesic distance
can be interpreted as an intrinsic measurement of the uncer-
tainty or unpredictability in a density function relative to an-
other. We abuse notation and refer to both continuous and
discrete models with the same symbols; however, the differ-
ence should be clear from the context.

Positive probability density functions will be represented
via their log-likelihood ϕ(x) = log p(x). Thus, a function
ϕ : I →R represents an element of P if and only if it satisfies∫

I
eϕ(x) dx = 1 . (1)

Remark. In the discrete formulation, ϕ denotes the vector
(ϕ(x1), . . . ,ϕ(xn)), where 0 = x1 < x2 < .. . < xn = 1 are n
uniformly spaced points on the interval I.

Tangent vectors to the manifold P at ϕ represent infinites-
imal deformations of ϕ . Differentiating constraint (1) along
a small path of PDFs through ϕ representing such deforma-
tion, it follows that a function v : I → R represents a tangent
vector at ϕ if and only if

∫
I v(x)eϕ(x) dx = 0. This simply



means that v has null expectation with respect to eϕ(x) dx.
Thus, the tangent space TϕP to the manifold P at ϕ can be
described as

TϕP = {v : I → R :
∫ 1

0
v(x)eϕ(x) dx = 0}.

What is the natural inner product on TϕP to consider?
For finite-dimensional, parametric families of probability
density functions, the Riemannian metric given by the pos-
itive definite quadratic form associated with the Fisher in-
formation matrix g(θ) has been studied extensively and is
regarded as the most natural geometry to consider from the
view point of information theory [1, 2]. Recall that if ϕ(s;θ)
is the log-likelihood of a positive PDF parameterized by
θ ∈ Rk, the (i, j) entry of g(θ), 1 ≤ i, j ≤ k, is

gi j(θ) =
∫

I

∂ϕ

∂θi
(x;θ)

∂ϕ

∂θ j
(x;θ)eϕ(x;θ) dx,

the covariance of ∂ϕ/∂θi and ∂ϕ/∂θi with respect to
eϕ(x;θ) dx. It is well-known that, infinitesimally, this
Riemannian structure coincides with the double of the
Kullback-Leibler (KL) divergence; that is, KL(θ + dθ ,θ) =
1
2 å k

i, j=1 gi j(θ)dθidθ j. It can be shown that the natural ex-
tension to the non-parametric setting is the inner product on
TϕP given by

〈v,w〉
ϕ

=
∫

I
v(x)w(x)eϕ(x) dx,

which agrees with Fisher information on parametric subman-
ifolds. A similar calculation with the Jensen-Shannon (JS)
entropy divergence, which is a symmetrization of the KL di-
vergence, leads to the same inner product, up to a multiplica-
tive factor. This means that both KL and JS, which are ex-
trinsic measures of divergence, essentially lead to the same
inner product on TϕP. In the discrete formulation, we write
d(ϕ1,ϕ2) for the geodesic (or shortest path) distance between
ϕ1,ϕ2 ∈ P with respect to this Riemannian structure. An al-
gorithm to compute geodesics in P has been developed by
the authors, but details will be presented elsewhere.

3. TEXTURE REPRESENTATION

Given a bank of filters F = {F j,1 ≤ j ≤ K} and an image
I, let I j be the associated spectral components obtained by
applying filter F j to the image. Assume that the histogram
of the jth spectral component is modeled on a PDF with log-
likelihood ϕ j ∈ P. The (texture of) image I will be repre-
sented by the K-tuple F =

(
ϕ1, . . . ,ϕK

)
∈ P× . . .×P = PK .

We should point out that this is a global representation of
the image I, but the same construction applied to local win-
dows leads to multi-scale representations of texture patterns.
If F A, F B ∈ PK represent images IA and IB, respectively, let
dT be the root mean square geodesic distance

dT (F A, F B) =

(
1
K

K

å
j=1

d2(ϕ j
A,ϕ j

B)

)1/2

, (2)

which defines a metric on the space PK of texture represen-
tations.
Remark. In specific applications, one may wish to attribute
weights to the various summands of dT (F A, F B) in order to
emphasize particular filters.

Figure 1: Original images.

Figure 2: Regions obtained by clustering pixels into two
clusters using histograms of local responses to 5 filters are
highlighted in two different ways.

4. EXPERIMENTS

In this section, we discuss results obtained in image segmen-
tation experiments with the ideas discussed above. To illus-
trate the ability of the metric dT to discern and classify lo-
cal texture patterns, we clustered the pixels of some images
using local histograms associated with five spectral compo-
nents and the metric dT as measure of dissimilarity – a hier-
archical “centroid” clustering was adopted.

In the first experiment, pixels of the images shown in
Fig. 1 were grouped into two clusters. In Fig. 2, the clusters
obtained are highlighted in two different ways; observe that
clusters may be disconnected as in the image with a butter-
fly. Since clustering was performed at a low resolution, the
boundaries of the regions are somewhat irregular. Note that
because of the resolution and the local window size utilized
in the spectral analysis, the relatively thin white stripes on
the fish are clustered with the rest of the fish, not with the
background.

The results of another set of experiments are displayed
in Fig. 3. The original image is shown on the leftmost panel
of the first row. The other images on the first row highlight
the regions obtained by grouping the pixels into two clus-
ters. The regions obtained in a similar experiment with three
clusters are shown on the second row.

5. THE SPECTRAL CARTOON MODEL

To model texture patterns using multi-resolution spectral
components of images, we localize the notion of appear-



Original Image Cluster One of Two Cluster Two of Two

Cluster One of Three Cluster Two of Three Cluster Three of Three

Figure 3: First row: the original image and the regions obtained by grouping the pixels into two clusters using histograms of
local responses to 5 filters. Second row: results of a similar experiment with three clusters.

ance, as follows. Given a bank of filters F = {F1, . . . ,FK}
and an image I, let I j, 1 ≤ j ≤ K be the associated spec-
tral components. For a pixel p, consider a window of fixed
size (this determines the scale) centered at p and let h j

p be
the histogram of I j restricted to this window. After some
processing (e.g., using kernel density estimators and appro-
priate normalizations), the histograms h j

p yield an s-tuple
F p =

(
ϕ1

p, . . . ,ϕ
K
p

)
∈ PK , which encodes the local texture

pattern near the pixel p. If p,q are two pixels, we use the
distance dT (F p, F q) defined in (2) to quantify texture diver-
gence.

To simplify the discussion, we consider a binary model
and assume that the image consists of two main regions: a
background and a single foreground element, which are sep-
arated by a closed contour C. The proposed model can be
modified to allow more complex configurations as in [10]. A
key difference to be noted is that unlike the classical Ising im-
age model, where a binary cartoon is adopted (see e.g. [9]),
we make a similar assumption at the level of spectral rep-
resentations, so that even the cartoons can be non-trivially
textured. Thus, variations of pixel values, usually treated as
white noise, will be modeled on random fluctuations of more
structured texture patterns.

Let I : D→R be an image, where D is the image domain,
typically a rectangle in R2. Consider triples (F in, F out ,C),
where C is a closed contour in D, and F in, F out ∈ PK repre-
sent models for the local texture patterns in the regions inside
and outside C, respectively. We adopt a Bayesian model,
with a Mumford-Shah type prior assumption that C is not
“unnecessarily” long, so that the prior energy will be a multi-
ple of the length `(C). This can be easily modified to accom-
modate other commonly used terms such as the smoothness
prior given by the elastic energy. The proposed data likeli-

hood energy is of the form

Ed(I|F in, F out ,C) = α

∫
Din

d2
T (F p, F in)d p

+β

∫
Dout

d2
T (F p, F out)d p ,

(3)

where α,β > 0, and Din, Dout are the regions inside and out-
side C, respectively; the values of the parameters α,β are
related to the variance of texture patterns in Din and Dout .
The idea is that Ed will measure the compatibility of local
texture patterns in an image I with the texture of a proposed
cartoon. The spectral cartoon of I is represented by the triple
(F in, F out ,C) that minimizes the posterior energy

E(F in, F out ,C|I) = α

∫
Din

d2
T (F p, F in)d p

+β

∫
Dout

d2
T (F p, F out)d p+ γ `(C) ,

(4)

γ > 0.
Since the estimation of the triple (F in, F out ,C) may be

a costly task, we propose a simplification of the model.
For a given curve C, the optimal F in can be interpreted as
the average value of F p in the region Din, and the integral∫

Din
d2

T (F p, F in)d p as the total variance of F p in the region.
We propose to replace d2(F p, F in), the distance square to the
mean, with the average distance square from F p to F q, for
q ∈ Din, q 6= p, which is given by

1
Pin−1 å

q∈Din
q6=p

d2(F p, F q) .

Here, Pin is the number of pixels in Din. Proceeding simi-
larly for the region outside, the task is reduced to the simpler



maximum-a-posteriori estimation of the curve C; that is, the
curve that minimizes the energy functional

E(C|I) =
α

Pin−1 å
p,q∈Din

q6=p

d2(F p, F q)

+
β

Pout −1 å
p,q∈Dout

q 6=p

d2(F p, F q)+ γ `(C) .
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