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ABSTRACT
This article presents a two-step algorithm performing an un-
supervised extraction of hydrographic networks from satel-
lite images, within a stochastic geometry framework. First,
the thick branches of the network are detected by a segmen-
tation algorithm based on a Markov random field. Second,
the line branches of the network are extracted using a recur-
sive algorithm based on a hierarchical model of hydrographic
network, in which the tributaries of a given river are mod-
eled by an object process in the neighborhood of this river.
Optimization of the object process is done via simulated an-
nealing using a reversible jump Markov chain Monte Carlo
algorithm. We show experimental results on a satellite radar
image.

1. INTRODUCTION

Image analysis is an important tool for cartographers to op-
timize the time spent on ground while improving the ac-
curacy of the final document. With the availability of re-
motely sensed images and advances in computing technolo-
gies, many methods have been developed in order to extract
cartographic items for updating geographical data. In this
context, we have been interested in extracting hydrographic
networks constituted of rivers and their tributaries from re-
motely sensed images. For remote sensing applications, clas-
sification is one of the most commonly used techniques to ex-
tract quantitative information from images. Markov Random
Fields (MRFs), known for their robustness with respect to
noise, allows to introduce explicitly a prior knowledge on the
spatial structure of the analyzed images through local condi-
tional probabilities [1]. Nevertheless, it remains difficult to
incorporate strong geometrical constraints in such models,
since MRFs are defined locally.

In order to exploit the geometrical and topological char-
acteristics of the hydrographic networks, we use object pro-
cesses, that are random sets of objects whose number of ob-
jects is a random finite variable. Such models, introduced in
image processing in [2], provide the same type of stochas-
tic properties as those of MRFs, while incorporating strong
geometric constraints. Interactions between objects are taken
into account in the density of the process, which allows to in-
corporate constraints on the network topology. In [3, 4], un-
supervised road network extraction is performed using object
processes whose objects are interacting line segments. These
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models lead to continuous extracted line networks with few
omissions and overdetections. This modeling is extended
in [5] to more complex objects: the objects are interacting
polylines composed by an unknown number of segments,
which improve the accuracy of the detection. At the end
of the algorithm, each detected polyline corresponds to the
central axis of a road or a river of constant width.

In this paper, we use the same type of modeling as in [5]
while exploiting the fact that the hydrographic network has
a tree structure. As the manipulation of complex objects is
computationaly expensive, we propose to initialize the algo-
rithm by an extraction of the thick branches using a MRF.
Then, the line branches of the network are extracted using
a recursive algorithm based on a hierarchical model of hy-
drographic networks, in which the tributaries of a detected
river are modeled by a polyline process in the neighborhood
of this river.

2. DATA

The data used in this study are a radar image (ERS) over a
region of French Guyana provided by the BRGM (French
Geological Survey). This image is shown in Figure 1. The
sought-after cartographic item is the hydrographic network.
The latter is characterized by a tree structure, where the main
river is the root of the tree and its tributaries are branches
from which other branches can be generated. The radar im-
agery is well-adapted, as rivers correspond to dark regions
in the image in a light background. The main difficulty is to
extract the fine branches (width lower than 3 pixels) whose
detection is perturbed by speckle noise (radar).

3. FIRST SEGMENTATION

To extract the rivers from radar images, we first propose a
segmentation method based on a Markov random field. We
suppose that there are two labels: cR corresponding to the
rivers and cB corresponding to the background. Given the
data field Y , our goal is to find the label field X . Embedded
in a Bayesian framework, a natural candidate for X is the
Maximum A Posteriori (MAP) estimator:

X̂MAP = argmax
X

P(X |Y ) = argmin
X

U(X |Y ) (1)

where the energy U can be written as follows:

U(X |Y ) = U1(X)+U2(Y |X) (2)

where U1 is the prior term and U2 the data term.



Figure 1: Radar image (ERS) of French Guyana of size 1098x884 and resolution 12.5 meter c©BRGM.

To regularize the classification while preserving the
edges we define a boolean line process as proposed by [6]
for image restoration. This process explicitly represents the
presence of an edge in the image. The prior term is then
given by:

U1(X) = b å
<s,t>

dxs 6=xt (1−b<s,t>) (3)

where b is a positive weigh, < s, t > denotes the pair of
neighboring pixels s and t, xs is the value of X at pixel s,
b<s,t> denotes the value of the line field B between the pixels
s and t, and dA is equal to 1 if A is true and 0 if not. In order
to be efficient, we consider the process line as known. We
use a “Canny-Deriche” filter to compute the line field [7].

The data term is then defined as follows:
U2(Y |X) = å

s
g(ys|mR,sR)dxs=cR +g(ys|mB,sB)dxs=cB (4)

where g(.|m,s) is the Gaussian log-likelihood function of
mean m and standard deviation s , mR and sR (resp. mB and
sB) correspond to the empirical mean and variance of the
pixels whose label is cR (resp. cB). The values mR, sR, mB
and sB are updated during the optimization algorithm at each
scanning of the image.

Instead of estimating the MAP with a simulated anneal-
ing, we use the Iterated Conditional Mode algorithm which
converges to a local minimum of the energy [8]. This sim-
ple method gives good results in a few seconds (with a pro-
cessor 1 GHz). All the thick branches (larger than 3 pixels)
are detected and the few false alarms can be easily removed
by a morphological post-processing as shown in Figure 2.
Nevertheless, the line branches (lower than 3 pixels) are not
detected. Some tests have been performed using more elab-
orate models and simulated annealing but, despite some im-
provements, a large part of the lines of the network was still
omitted.

Figure 2: Segmentation using a MRF and a morphological
post-processing.

4. NETWORK MODELING USING STOCHASTIC
GEOMETRY

4.1 Hierarchical modeling

In this section, we model the network by a collection of ob-
jects having a hierarchical structure, each object correspond-
ing to a river. The first level of the hierarchy represents the
main rivers of the observed scene. For each object of the first
level - considered as known - a process is defined in its neigh-
borhood to model the tributaries of the corresponding main
river. For each tributary, a process is defined in its neighbor-
hood to model its tributaries. And so on.



4.2 Process defined in the neighborhood of an object

Let C be the set of detected objects. Each object c ∈ C is
described by a polyline corresponding to its central axis and
its projection in the image S(c). Let EC be the equivalent in
continuous of S(c). EC is thus defined as a bounded set of
R

2 which is delimited by the edges of the object c.
For each object c ∈C, we defined a reference object pro-

cess within the influence zone V (c) ⊂ R
2 of c, defined as

follows:

p ∈V (c) ⇔





d(p,c) < dmax

p /∈ EC

c = argmin
C

d(p,c)
(5)

where d(p,c) denotes the distance between p and the edges
of c. The figure 3 illustrates this definition. Each object of the

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������

c
V(c)

Figure 3: Influence zones.

reference process is a polyline described by its initial point
p ∈V (c), and an unknown number n of segments, which are
described by their length and their orientation. Under the ref-
erence process law, the number N of polylines follows a Pois-
son law, the initial points are uniformly distributed in V (c)
and the other parameters are independently and uniformly
distributed in their respective state space.

To introduce an a priori on polyline shapes and interac-
tions between polylines, we then specify the process by a
prior density hp with respect to the reference process law.
The expression of hp is the following:

hp(Xc) = exp(− å
x∈Xc

U1(x)) (6)

where Xc is the configuration of objects defined with respect
to c and U1 is given by:

U1(x) =





+¥ if ∃s ∈ Xc : |S(s)∩S(C∪Xc \ s)| >
|S(s)|

2
U11(n)+

n−1

å
j=0

U12(a j ,a j+1) if not

(7)
The prior term U1 forbids the overlapping of more than 50%
of the area S(s) covered by a segment s of a polyline with
the area of the rest of the network. Moreover, it favors long
polyline through a potential U11 on the number of segments
n composing a polyline x. It favors slight curvature through a
potential U12 on pairs of successive orientations {a j,a j+1}.
For more details, see [9].

The incorporation of data properties is done by a data
term hd based on a local contrast measure of the projection of

the current configuration S(Xc) in the image with its nearby
background. To compute the contrast value, we associate
to each segment s composing the polylines a mask of pixels
Ms = (S,B) composed of:
• an internal region S corresponding to the object in the

image;
• an external region B corresponding to the nearby back-

ground.
S is composed of the discrete segment and the neighboring
pixels in the normal direction with value v satisfying:

g(v|mR,sR) > g(v|mB,sB) (8)

where g(.|m,s) is the Gaussian log-likelihood function, mR
and sR (resp. mB and sB) correspond to the empirical mean
and variance of the rivers (resp. background) detected using
a MRF. The other pixels of the mask are assigned to B. The
line width (supposed to be lower or equal than 3 pixels) is
thus implicitly taken into account through observations. The
contrast between S and B is evaluated using the statistical
measure usually used to perform Student t-test, which allows
to evaluate if the means of two sets are significantly different.

Let M(Xc) be the set of pixels belonging to the masks of
the segments of the configuration Xc. Each pixel p ∈ M(Xc)
belongs to at least one mask. For each mask M that includes
p, we have computed a contrast value vM . The local contrast
value at pixel p is then the minimal contrast value computed
on these masks: vc(p) = min

M/p∈M
vM(p) . Finally, the data term

is given by:

hd(Xc) = exp(− å
p∈M(Xc)

uc(p) (9)

where uc(p) is a potential directly based on the local contrast
measure vc(p).

The complete density of the process is then given by:

h(Xc) µ hp(Xc) hd(Xc) (10)

5. NETWORK EXTRACTION USING A
HIERARCHICAL MODELING

5.1 Initialization

The network initialization is based on the segmentation us-
ing a MRF presented in section 3. The morphological post-
processing provides a connex component for each network
composed of a main river, its tributaries, the tributaries of
these tributaries, etc. To go from pixels to objects, we pro-
pose a two step algorithm which consists of: first, the extrac-
tion of the skeleton of each connex component; second, the
polygonalization of this skeleton in order to obtain a tree of
polylines, each polyline corresponding to the central axis of
a river.

This first step provides thus a tree of objects correspond-
ing to the surface part of the network. We have then a partial
representation of the detected objects: the ends of branches
are omitted as the river width decreases in direction of the
spring. To extend each polyline c, we propose to estimate
the set of the final parameters v̂ (orientations and lengths of
final segments) which minimizes the energy associated to the
extended polyline cv = (c,v):

v̂ = argmin
v

[U1(cv)+ å
p∈M(cv)

uc(p)] (11)



The optimization is done via a simulated annealing using
a Monte Carlo Markov Chain (MCMC) algorithm. The
MCMC algorithm - which consists in simulating a discrete
Markov Chain which converges toward the measure of inter-
est - is the Metropolis-Hastings algorithm [10]. At each step,
a transition from the current state to a new state is proposed
according to a proposition kernel which is composed of sev-
eral sub-kernels, each corresponding to a reversible move.
The transition is accepted with a probability given by a ratio
which is computed so that the detailed balance condition is
verified (condition under which the generated Markov chain
converges toward the process measure). The perturbations
proposed in the sampling algorithm do not modify the initial
parameters of the considered polyline. We use two reversible
moves: “add-and-remove” a segment to the end of the poly-
line; “translation” of a point of the polyline.

5.2 Generating new branches

The hierarchical modeling of the network allows to complete
the partial network obtained in the initialization phase using
a recursive algorithm that generates new branches from each
detected branch c. This generation is based on the definition
of a process in the neighborhood of an object as described in
section 4.2.

Given all detected objects, we perform an optimization of
the process associated to c (i.e. a maximization of the den-
sity given in equation (10)) via a simulated annealing using a
Reversible Jump MCMC (RJMCMC) algorithm. The RJM-
CMC algorithm is a Metropolis-Hastings algorithm adapted
to the sampling of spatial point processes [11, 12]. We
use three reversible moves: “birth-and-death” of a polyline,
“add-and-remove” a segment at the end of a polyline; “trans-
lation”of a point of a polyline. The result of this algorithm
applied to the initial tree is given in Figure 4. It was obtained
in less than 20 minutes (processor 3 GHz). The result is en-
couraging as only one branch was not detected with respect
to a manual extraction provided by the BRGM. Moreover,
there is only two little false alarms.

5.3 Conclusion

We have proposed a method for unsupervised network ex-
traction from satellite images combining the advantages of
two approaches: a segmentation using a MRF and an object
extraction using stochastic geometry. The MRF performs an
efficient extraction in terms of computing time and in terms
of detection of the surface part of the network. Neverthe-
less, the line part of the network is not detected with such
an approach. This study has shown that the object processes
bring a solution when the MRF approaches reach their limits.
Indeed, this approach allows us to extract almost all rivers
present in the scene. This is efficiently done thanks to the
use of the segmentation result and the exploitation of the tree
structure of hydrographic networks. In the near future, we
will focus on data fusion in order to benefit from the contri-
bution of several sources (for instance, multi-sensor data).
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