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ABSTRACT

In this work we deal with the classification of remote-sensing
images following a statistical approach. To take into ac-
count prior information on the class of images of interest we
model the image as a tree-structured Markov random field
(TS-MRF), so as to fit the intrinsic structure of the data. TS-
MRF models are defined recursively and, as such, lead to the
formulation and solution of the segmentation task as a recur-
sive problem, so that the original K-ary segmentation is de-
composed into a sequence of reduced-dimensionality steps,
and hence to a much simpler and more manageable segmen-
tation. Here, we propose a method to build automatically
the underlying tree structure of the model, based on a met-
ric which compares class features in order to establish the
hierarchical relationships among classes, and apply the tech-
nique to the segmentation of multitemporal remote-sensing
images.

Key-words: Image classification, remote-sensing images,
Markov random fields, hierarchical models.

1. INTRODUCTION

Segmentation aims at the partition of an image in disjoint
regions, each one homogeneous with respect to some prop-
erties like intensity, texture, shape, etc. Such a task is needed
in many high-level processing and applications in such di-
verse fields as remote-sensing, medical imaging, image re-
storation, or video coding.

In remote-sensing applications, the segmentation task is
very difficult because of the presence of significant noise
components and the intrinsic complexity of the images. Hen-
ce, data modeling becomes quite critical, and the statistical
approach may result advantageous with respect to other non-
stochastic approaches. In this work, we resort to the Markov
Random Field (MRF) probability model [1], and in particu-
lar to a class of MRF models, named Tree-Structured MRFs
(TS-MRF) [2, 3], which has proven to be a powerful and
manageable tool to address such segmentation problems.

Indeed, TS-MRF models are defined recursively and, as
such, lead to the formulation and solution of the segmenta-
tion task as a recursive problem. As a consequence, the orig-
inal K-ary segmentation is decomposed into a sequence of
reduced-dimensionality (typically binary) steps, and hence
to a much simpler and more manageable segmentation. Each
step subdivides a large region into two or more component
regions leading to a tree-structured representation of the im-
age. Each image region is associated with a node in a tree
of classes, with the elementary regions, associated with the
leaves of such a tree, corresponding to the final segmentation
map.

In this work we propose a technique to single out the un-
derlying tree structure of the model, based on the progres-
sive merging of classes, guided by a statistical measure, the
merging gain [2], which quantifies similarity among classes.
We then apply the proposed technique to the problem of seg-
menting multitemporal remote-sensing images, so as to de-
tect changed and unchanged regions.

2. TS-MRF MODELS AND SEGMENTATION

A random field X defined on a lattice S is said to be a MRF
with respect to a given neighborhood system if the Marko-
vian property holds for each site s. The distribution of a pos-
itive MRF can be proved to have a Gibbs form [1], that is

p(x|θ) =
1
Z

exp[−U(x,θ)], (1)

with U(x,θ) = ∑c∈C Vc(xc,θ), where x is the realization of
the field X , θ is the set of parameters of the model, the Vc
functions are called potentials, U denotes the energy, Z is
a normalizing constant that depends on θ , and c indicates a
clique of the image. Note that each potential Vc depends only
on the values taken on the clique sites xc = {xs,s ∈ c} and,
therefore, accounts only for local interactions. As a conse-
quence, local dependencies in X can be easily modeled by
defining suitable potentials Vc(·).

Let us now consider a K-class image segmentation prob-
lem and model the unknown label map with a random field
X defined on the lattice S of the image y to be segmented.
Furthermore, consider a generic tree T = T ∪ Λ, where Λ
is the set of the K leaves of the tree, associated with the K
classes present in the image, while T is the set of the in-
ternal nodes. Through such a tree we can represent the hi-
erarchical relationships among classes, where each internal
node represent a “virtual” class obtained by merging its de-
scendant classes. An example is shown in Fig.1, where the
whole 4-class image is associated with the root (node 1) of
a binary tree, then the light+dark blue virtual class is associ-
ated with the left child (node 2), and finally the elementary
classes with leaves 4 and 5 respectively. Likewise, the or-
ange+brown virtual class is associated with node 3 and the
elementary classes with leaves 6 and 7. For this simple syn-
thetic image, it is clear that a hierarchical representation is
certainly appropriate, but also natural images often exhibit
this kind of structures, although not so evident, which is why
a tree-structured representation can be of interest.

With each internal node t of the tree, starting from the
root, we can associate a Kt -class local field Xt (where Kt ≥ 2
is the number of children of node t) which divides the cor-
responding region in Kt subregions. Hence, the whole field
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Figure 1: Example of synthetic image and associated tree.

x is recursively specified by the set of local fields {xt}t∈T ,
and is therefore a tree-structured field. Notice that the fields
Xt are defined recursively, meaning that each of them can
be defined only when all ancestor fields Xω(t) = {Xk}k∈ω(t)

are given1 and, as a consequence, every probability law that
concerns a local field Xt must be conditioned on the ancestor
fields Xω(t).

We say that the whole field {Xt}t∈T is a tree-structured
MRF (TS-MRF) w.r.t. T if

p(x) =
1
Z

exp[−U(x,θ)] =
1
Z

exp[−∑
t∈T

Ut(xt)], (2)

that is if each Xt is a MRF conditionally on Xω(t), with Gibbs
energy Ut(xt) = Ut(xt ;xω(t),θ t), and parameters θ t [4]. As
a consequence it is easy to show that T is an independency
graph for the set of local fields {Xt}t∈T , that is

p(x) = p({xt}t∈T ) = ∏
t∈T

p(xt |xω(t)). (3)

Let us now consider the problem of finding the MAP seg-
mentation, x̂ = {x̂t}t∈T , which maximizes the a posteriori
distribution p(y|x)p(x). Each component x̂t can be written as

x̂t = argmax
xt

[
max
{xk}k 	=t

p(y|x)p(x)

]
(4)

which makes clear that the maximization at node t depends
in general on all other nodes k 	= t. These in turn can be clas-
sified w.r.t. to t (see Fig.1) as ancestors, ω(t), descendants,
d(t), and non-related nodes or “others” o(t). It is easily rec-
ognized that, given ω(t), node t is independent2 of all nodes
in o(t). If t were also independent of d(t), then 4 would re-
duce to

x̂t = argmax
xt

[
max

{xk}k∈ω(t)

p(y|x)p(x)

]
(5)

1ω(t) indicates the set of ancestors of node t.
2by this we mean that all quantities pertaining to node t are independent

of all quantities pertaining to node k ∈ o(t).

and the maximization could be easily carried out one node
at a time, from the root down to all the leaves of the tree.
However, node t depends on its descendants both through
the likelihood term (because the observed data for node t
coincide with the observed data for its descendants), and
through the field Xt (which defines the support for the de-
scendant MRF’s). The first dependence can be accounted for
by suitably modifying the likelihood term as shown in [3].
As for the second dependence, in order to obtain a simple and
fast maximization algorithm, we will simply neglect it. This
choice, although arbitrary, is supported by experimental evi-
dence which shows that the neglected terms do not improve
significantly the segmentation quality, while much increasing
the computational burden.

3. BUILDING THE TS-MRF

Looking at the definition of a TS-MRF, several topics remain
open, like the MRF models to associate with the nodes of the
tree or the definition of the best tree structure to use. In this
work we address the last question, under the conditions that
only binary trees are permitted and only Potts models can
be used as local fields. We also assume to know in advance
the number of classes and some related statistics (class-wise
mean vector and covariance matrix).

The proposed procedure builds the tree from the bottom,
by associating the elementary classes with the leaves of the
tree, and then iteratively merging couples of nodes. In fact
the TS-MRF approach succeeds in separating highly corre-
lated classes, difficult to split, by isolating them from the oth-
ers and associating them to sibling nodes, so that a dedicated
MRF can take charge of the task. Our conjecture, therefore,
is that classes which are similar in terms of spectral response,
or have a high degree of spatial adjacency, should be kept as
“close” as possible in the tree. In the bottom-up perspective,
this means that such classes should be merged first. The key
point of the procedure is therefore a measure that quantifies
class similarity and hence the goodness of a merge.

To this end we resort to a probabilistic measure named
merging gain. This measure was originally introduced in [2],
in an unsupervised context, to decide whether two classes
had to remain isolated or be merged. It is defined as

Mt =
p(yt |θ t)

p(yt |x̂t)p(x̂t)
(6)

where t is the candidate father of the two nodes under test
(say t ′ and t ′′), and x̂t is the realization of the MRF at node t
which segments the region associated with t returning those
associated with t ′ and t ′′. The merging gain is large when
the classes are spectrally close because the single-node like-
lihood p(yt |θ t) is very close to likelihood p(yt |x̂t) computed
after segmentation for the two separated classes. Moreover
it is large when the two regions under test have an active
boundary because the realization of the father MRF x̂t is not
very likely. Of course, to compute the merging gain, a pre-
classification of the image is needed, and here we used a sim-
ple maximum likelihood classifier to this end. For further
details on the merging gain, the reader is referred to [2].

The tree structure is then singled out by a sequence of
binary class merging starting from the pair of classes asso-
ciated with the higher merging gain. By doing so, merging
classes will progressively replace the original ones until a



Figure 2: Band 1 of the synthetic image and ground truth.

single class that covers the whole image is reached and asso-
ciated with the tree root.

4. EXPERIMENTAL RESULTS

We begin the experimental analysis by considering a simple
synthetic image with 5 classes. Fig.2 shows one band of the
synthetic image, clearly characterized by a very low signal-
to-noise ratio, and its ground truth.

For this simple image, the proposed algorithm finds eas-
ily the correct tree-structure, shown in Fig.3 together with
the corresponding TS-MRF segmentation map. In Fig.4, for
comparison, we show the segmentation map obtained with
a ”wrong” tree structure, also shown in Fig.4. The global
performance parameters show only minor, although consis-
tent, changes: the overall accuracy τ , that is the percentage
of sample pixels that are correctly classified, is 87.9% with
the correct structure and 85.8% with the wrong one. Like-
wise, the normalized accuracy τnorm, which weighs the ac-
curacy against the relative abundance of the various classes,
goes from 91.5% to 88.4%, and also the Kappa parameter
reduces from 84.5% to 81.8%. This 2-3% difference is cer-
tainly significant, but the visual analysis of the segmentation
maps is even more interesting as it shows that the correct tree
structure helps preserving the fine structure of the image, es-
pecially in the most critical areas characterized by high spa-
tial activity. In the brown-orange areas, for example, where
most errors are concentrated because of the rapid alternation
of classes with similar statistics, the map of Fig.3 exhibits a
statistical behavior that, despite the errors, closely resembles
that of the original map. The same does not happen with the
wrong structure, where the orange areas become predomi-
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Figure 3: Segmentation with the correct tree structure.

nant, the quasi-periodic behavior is almost lost, and some
pixels are even attributed to other (blue) classes. Similar re-
sults are obtained when no structure at all is used, namely, an
ordinary 5-class MRF model is used to carry out the segmen-
tation.

We now turn to experimenting with a real-world multi-
temporal image. The data set used for the experiments refers
to an agricultural area in the Basin of the Po River (northern
Italy), and is composed by two registered images acquired by
the Landsat TM sensor (bands 1-6) in April and May 1994 (a
512 × 512 square section, April, band 3, is shown in Fig. 5).
For this image a ground-truth was available to provide land
cover composition and class-parameters estimation. The land
classes present in the April data set are wet rice fields (WR),
bare soil (BS), cereals and wood, while in May we find corn,
wet rice fields, dry rice fields (DR), cereals and wood.

From ground-truth inspection, it results that changes in-
volve only some specific classes: wet rice fields which par-
tially became dry rice fields, and bare soil that disappears
thoroughly to become rice fields (wet or dry) or corn (this
last class being absent in April), while, on the other hand,
other two classes (cereals and wood) have no change. Based
on these observations, change-classes have been defined and
added to no-change classes, as listed in Fig. 6.

The “binary” TS-MRF model used in experiments was
built with simple Potts [1] local fields at each node of the
tree, while single splits were performed by combining an
ICM procedure with the MPL method for the estimation of
prior parameters [5].

The tree structure of the model singled out by the pro-
posed method is drawn in Fig. 6. Subsequently, a joint
segmentation of the two images has been performed on the
whole data set by considering such a global class hierarchy
and the resulting classification map is shown Fig. 7.

The results are very close (both visually and in terms of
classification accuracy) to those provided by a reference TS-
MRF segmenter in which the tree structure was however built
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Figure 4: Segmentation with the wrong tree structure.

Figure 5: Band 3 (April) of the Landsat image.
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Figure 7: Segmentation map provided by TS-MRF algo-
rithm.

ad hoc by a human operator based both on statistical data
and on the semantics of the classes (see [6]). The tree build-
ing procedure is therefore fully satisfactory since it seems
able to provide the same results that were obtained through
a painstaking construction of the tree by the experimenter. It
is worth underlining that both TS-MRF classifiers compare
favourably with other MRF-based non-structured classifier
(see again [6]) even though the image used is not so “struc-
tured”, as in other experiments like those presented in [3].

5. CONCLUSIONS

In this work we have considered a class of MRF models, the
TS-MRF, and shown some properties which allow for the fast
recursive segmentation and classification of images. We have
then proposed a simple procedure to build the tree structure
of the model so as to follow the underlying statistical struc-
ture of the image. The procedure is based on a probabilis-
tic measure, the merge gain, that accounts for the similar-
ity of classes by weighting their spatial and spectral correla-
tions. The proposed technique has been finally applied, with
good results, to the segmentation of a multitemporal remote-
sensing image.
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