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ABSTRACT 
In this paper we present a new algorithm for blind source 
separation (BSS) based on the Constant Norm (CN) 
criterion for Multiple-Input Multiple-Output (MIMO) com-
munication systems. The treated problem consists in 
blindly recovering (i.e. without the use of training 
sequences) the signals transmitted over a linear MIMO 
memoryless system, which introduces only Inter Stream  
Interference (ISI). From the proposed algorithm, we deduce 
two other new algorithms designed especially for QAM 
signals. The first one is named Constant sQuare Algorithm 
(CQA) and the second one, which is a weighting between 
the Constant Modulus Algorithm (CMA) and the CQA to 
get the advantages of both, is named Constant Dynamic 
Norm Algorithm (CDNA). At each iteration, the algorithms 
combine a stochastic gradient update and a Gram-Schmidt 
orthogonalization procedure. The simulation results show 
that the proposed algorithms have better performances 
compared to CMA and Multiuser Kurtosis Algorithm 
(MUK) with comparable complexity. 

1. INTRODUCTION 

The BSS problem emerged two decades ago. It arises in a 
wide variety of signal processing applications, as for 
example speech enhancement, seismic analysis, medical 
applications (EEG) [1] and others. Since ten years, the 
application of this technique (BSS) in digital communi-
cations has received increased interest, as in [2] for 
multiuser communications (CDMA) modeled as a MIMO 
system. In literature, we find also the kurtosis-based 
algorithm (MUK) [3], which represents an extension of the 
kurtosis-based algorithm developed first for blind 
equalization in SISO systems by [4]. More recently, a BSS 
technique has been applied to Bell Labs Layered Space-
Time (BLAST) communication system based on the 
multimodulus algorithm MMA [5]. 
In this paper we propose a new BSS technique named 
CNA-MIMO algorithm, which represents an extension to 
MIMO systems of the CNA introduced recently by [6], 
combined with Gram Schmidt orthogonalization procedure. 
This class of algorithms contains the well-known CMA. 
Then, we present two new algorithms derived from CNA. 
The first, named Constant sQuare Algorithm (CQA) better 
adapted for QAM modulation than the classical CMA. It 

results in lower algorithm noise and comparable complexity 
compared to CMA. The second is a weighting between the 
CMA and CQA to get the advantages of both. The 
weighting coefficient is dynamically driven and justifies the 
name of Constant Dynamic Norm Algorithm (CDNA). 
The basic idea of the proposed algorithms is to minimize 
CNA-MIMO cost functions by the gradient stochastic 
algorithm then project the updated parameters to the 
orthogonality constraints, which ensures the independence 
among the equalizer outputs at each iteration. 
The paper is organized as follows. In section 2, the problem 
formulation and assumptions are introduced. In section 3, 
we present our new CNA algorithm. Then we drive two 
other algorithms named CQA and CDNA in section 4 and 5 
respectively. The performances of the proposed algorithms 
are compared with CMA and MUK algorithms in section 6. 
Finally a conclusion is given in section 7. 

2. PROBLEM FORMULATION  

We assume that  signals are transmitted through a 

MIMO system with  transmitter and  receiver 
antennas. The channel is assumed to be linear memoryless 
(frequency flat) that introduces only ISI. We assume also 
for simplicity that the received signals are sampled at the 
symbol rate 1/T. The received signal model then takes the 
familiar form: 
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We work under the following assumptions : 
1)  TR nn ≥

2) has full rank , independent and identically distri-
buted (i.i.d.) complex, zero-mean and unit variance entries. 

H Tn

3) The noise is additive white Gaussian, zero mean, 
independent from the source signals, with covariance 
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In order to avoid convergence to sets of signals that contain 
multiple times the same signal while missing other signals, 
the criterion MIMO-CNA will be modified. To be done, the 
approach of interest in this paper is Gram-Schmidt orthogo-
nalization procedure [3]. An other cross-correlation based 
approach has been proposed in literature as in [2]. 
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The problem is reformulated as a constrained optimization 
problem, equation (3) can be written as: 

 

4) The source signals are i.i.d, mutually independent and 
zero mean discrete-time sequences that share the same 
statistical properties, with covariance 
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Figure 1.  Model of a MIMO system 

The constraint comes from the fact that , 
which is the condition that penalizes the extraction of the 
same signal on many outputs. 
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To satisfy the constraint given in equation (4), the channel 
matrix H is assumed to be unitary in order that the 
constraint can be reduced to: 

In this paper we use the following notation: denotes 

complex conjugation, is the vector or matrix transpose, 

is the vector or matrix complex conjugate transpose 

and I is the ( identity matrix. 
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When the channel matrix is not unitary, a stage of 
prewhitening is necessary. It can be performed simply by 
the use of the well-known eigen-decomposition. In general, 
the main purpose of the prewhitening is to reduce the data 
vector dimension from  to , which is the number of 
source. In this paper the purpose is to whiten the data 
covariance matrix. In what follows we assume that this 
operation is realized either by supposing a unitary channel 
matrix or by application of prewhitening by means of 
eigenvalues decomposition. 

Rn Tn

The MIMO system is depicted on figure 1. 
In order to recover the transmitted signals, the received 
signal Y is processed by a  matrix equalizer 

. The receiver output can be written as: 
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Where: 
The simplest way of minimizing (4) is by means of a 
conventional stochastic gradient algorithm and to satisfy the 
constraint we perform a Gram-Schmidt orthogonalization, 
as we will show in the next paragraph. 

)(Z k is the (  vector of output signal; )1×Tn

HWG )()( kk T=  is the (  global system matrix 
and 

)TT nn ×
)(n k  is the filtered noise at the receiver output. We have noticed that, when the norm represents the 

modulus, then, we find the CMA algorithm, which is first 
conceived for PSK signals. The use of CMA for QAM 
signals is possible, but, in this case, the descent algorithm 
generates a significant amount of noise. For that purpose, in 
the next section we propose a new algorithm designed 
especially for QAM signals. 

The matrix W is feasible to separate source signals, except 
for a possible permutation and up to a unitary scalar 
rotation for each source signal [3]. 
In the next section, we present our new algorithm to blind 
separate the MIMO signal.  

3. MIMO-CNA ALGORITHM  
4. MIMO-CQA ALGORITHM The proposed algorithm is based on the Constant Norm 

(CN) criterion, recently developed by [6] in single user 
context. In MIMO context, the criterion to minimize, 
named MIMO-CNA, can be formulated as follows: 

Here we present an extension of the CQA algorithm [6] to 
MIMO context. The main reason for introducing this 
algorithm is that the QAM modulation is rather “square” 
than “round” (see figure 2). The idea is that, in place of 
constraining  the equalizer outputs to be on a circle as in 
CMA, we consider a square. The residual noise would be 
lower since the average distance between the symbols of 
constellation and the square ( l ) is shorter than that 
between the symbols and the circle ( ) [6], this concept 
is well illustrated on figure 2. 
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In what follows, we consider only the case where : 
. 2== qp

In order to better derive the square, we resort to the so-
called infinite norm, it’s given by: 

Clearly, in the particular case where , i.e. the 
norm is the modulus, we find the CMA algorithm. 
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5. MIMO-CDNA ALGORITHM  
 
 
 
 
 
 
 
 

CQAl

CMAl
As we take the infinite norm definition into account, it is 
obvious, contrary to CMA, that the CQA algorithm is 
sensitive to carrier residue because it recovers the phase. To 
alleviate this drawback, we present an extension of CDNA 
[6] to MIMO system. The CDNA is a particular case of 
CNA class algorithms, it consists in combining the 
advantages of both CMA and CQA, i.e. uses the CMA in 
transient phase followed by CQA for his better steady state. Figure 2. Principle of CMA and CQA  The used norm is defined by:  

where  and  are the real and imaginary part of  
respectively. 
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this norm depends on the weighting parameterλ , thus, for 
0=λ  and 1=λ  we find the modulus and the infinite norm 

respectively. The constant 0>α  gives an additional 
degree of freedom. So as to make the best of this definition 
of norm, the weighting parameter λ  may be adaptively 
updated by means of stochastic gradient algorithm.  

 
The cost function (4) is modified as:  
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The cost function is modified as:           
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The stochastic gradient algorithm used for minimizing (5), 
is written as:  

where 
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By a straightforward operation (calculus of gradient) we 
find: and the updating algorithm is given by: 
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In order to satisfy the constraint, we perform the Gram-
Schmidt orthogonalization on W defined by [3]:  
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and is the derivative of )(' λR )(λR  with respect to λ . 
The constraint is satisfied by application of Gram-Schmidt 
orthogonalization procedure at each iteration as in MIMO-
CQA algorithm (see equation 6).   

6. SIMULATION RESULTS 

In this section, the results of computer simulations are 
presented to illustrate the behavior of the proposed algori-
thms. To measure the algorithm performance we consider 
the Inter Stream Interference (ISI) of the i-th signal source 
at the k-th output, defined by: 

 
where:  and iW iW  are the i-th column vectors of W  and  

W  respectively. 
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The main advantage of  Gram-Schmidt orthogonalization 
procedure is that it results in an algorithm updating 
procedure having a deflation structure, which turns out to 
be the key in its convergence behavior. 



In the second experiment, we compare the CDNA with the 
CMA and CQA. The parameter λ is initialized to zero (so 
the CDNA starts off like a CMA), the coefficient α  is set 
to 1; and the step size  is fixed at 1.10λµ

-3. The step size 
for all algorithms was fixed at 8.10-3. The performance 
comparison is given for one output, the other outputs have 
the same behavior (figure 4). Clearly at the beginning the 
CDNA behaves as the CMA (exactly for the 300 iterations 
and approximatively until 1500 iterations). After 2500 
iterations the CQA becomes better than CMA, and 
consequently the CDNA tends to the CQA.  This result 
confirms that the CDNA tends to choose the best algorithm 
between the CMA and CQA.  

where , and are the k-th and 
i-th column vectors of matrices W and H respectively. 
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In our simulations, the system inputs are i.i.d, mutually 
independent and drawn from 64-QAM constellation. We 
have considered 4 transmitting antennas and 4 receiving 
antennas, they are assumed uncorrelated (ideal). The (4×4) 
channel matrix is chosen randomly. The system noise is 
complex white Gaussian with zero mean and variance 
determined by the Signal to Noise Ratio (SNR) of system. 
In both experiments, the received signal is prewhitened 
before applying the algorithms.  
In the first simulation experiment, we compare our propos-
ed CQA algorithm with CMA [2] and MUK [3] algorithms. 
The step sizes were chosen to have sensibly the same 
convergence speed for all algorithms. We consider an 
average over 1000 independents runs. Figure 3 shows ISI at 
each output, in dB’s for SNR=30 dB. It can be seen that the 
CQA reaches a better steady state than that of CMA and 
MUK, with a  difference of 3 dB between CQA and CMA.  

7. CONCLUSION 

In this paper, we have proposed a novel algorithm (CNA) 
for the MIMO communication systems, from which we 
have deduced the CQA and CDNA algorithms for blind 
separation of mutually independent i.i.d source signals that 
have the same probability distribution and are received in 
the presence of linear interference. The criteria consists of 
minimizing a constrained optimization problem that 
contains a sum of Constant Norm (CN) criterion and a 
constraint to prevent the extraction of the same signal at 
several outputs simultaneously. The proposed algorithms 
have shown their better performances compared to CMA 
and MUK algorithms with comparable complexity. We 
have found that the CQA reaches a better steady state than 
CMA (gain of 3 dB), and the CDNA tends to the best 
algorithm between CQA and CMA. Future work will target 
toward the extension of the proposed algorithms to 
convolutive mixing channels and to other situations 
(CDMA, OFDM) modeled like MIMO systems. 
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