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ABSTRACT
The goal of this work is to be able to quantify the quality
of a segmentation result without any a priori knowledge. We
propose in this article to fusion different unsupervised evalu-
ation criteria. In order to identify the best ones to fusion, we
compared six unsupervised evaluation criteria on a database
composed of synthetic gray-level images. Vinet’s measure is
used as an objective function to compare the behavior of the
different criteria. A new criterion is derived by linearly com-
bining the best ones. The linear coefficients are determined
by maximizing the correlation factor with the Vinet’s mea-
sure by a genetic algorithm. We present in this article some
experimental results of evaluation of natural gray-level im-
ages.

1. INTRODUCTION

Segmentation is a fundamental stage in image processing
since it conditions the quality of interpretation. Many seg-
mentation methods have been proposed in the literature [6],
[3] but it still remains difficult to evaluate their efficiency.
In order to make an objective comparison of different
segmentation results, some evaluation criteria have already
been defined and some literature is available. Briefly stated,
there are two main approaches.

On the one hand are evaluation methods based upon
the computation of a dissimilarity measure between a
segmentation result and a ground truth (due to the use of
synthetic images or derived by an expert). These methods
are of widely use for example in medical applications.

On the other hand are unsupervised evaluation criteria
providing to quantify the quality of a segmentation result by
computing different statistics without any a priori knowl-
edge. In [9], a comparative study of evaluation methods
of segmentation results of gray-level images is developed.
This article focuses on this kind of approach. Most of tested
criteria are not adapted for textured images. The problem is
that most of real images are composed of textured regions.
In order to solve this problem, Mac Cane [4] showed that it
is necessary to use the maximum of criteria and to combine
different of them.

An evaluation criterion can be used for different ap-
plications. One application is the comparison of different
segmentation results of a single image. This enables us to
compare the behavior of different segmentation methods in
order to choose the most appropriate one for a given appli-
cation. Another application is to facilitate the choice of the
parameters of a segmentation method. Image segmentation
needs generally the definition of some input parameters,
which are usually defined by the user. This task, that is
sometimes arbitrary, can be automated by determining the
best parameters with the evaluation criterion.

In the first part of this article, we realize a compara-
tive study of six unsupervised evaluation criteria. We use a
database of synthetic images and the Vinet’s measure as an
objective function. In the second part, we define a new cri-
terion by combining the best criteria in order to improve the
quality of evaluation. Finally, we present some experimental
results of evaluation on two natural images and we show the
efficiency of the proposed method.

2. DEVELOPED METHOD

The idea of this work is to improve the quality of the evalu-
ation of segmentation result by combining different criteria.
First, we realize a comparative study of evaluation criteria
from the literature. We use a genetic algorithm to find out the
optimal linear combination of the best criteria.

2.1 Unsupervised Evaluation criteria

We selected from the state of art [9] six unsupervised eval-
uation criteria of a gray-level image segmentation result and
one supervised criterion (used as an objective function) :
� Zeboudj’s contrast (Zeboudj) : This contrast takes into

account the internal and external contrast of the regions
measured in the neighborhood of each pixel. If we note
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where Ai is the surface and Fi is the border (of length li)
of the region Ri. The contrast of Ri is :
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� Levine and Nazif’s interclass contrast (Inter) [5] : This
criterion

�
CInter � computes the sum of contrasts of the

regions
�
Ri�weighted by their surfaces

�
Ai�. The contrast

of a region is calculated starting from contrasts with the
regions which are contiguous to it :
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, mi : the mean gray-level of the

region Ri, li j the length of the frontier between Ri and R j,
li the perimeter of the region Ri.� Levine and Nazif’s intra-class uniformity (Intra) : This
criterion computes the sum of the normalized standard
deviation of each region.� Combination of intra-class and inter-class disparity
(Intra-inter) : This indicator combines similar versions of
the Levine and Nazif interclass and intra-class contrast.� Borsotti criterion (Borsotti) [1] : This measure is based
on the number, the surface and the variance of the region
:
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where, mi is the average value of the grey-levels in the
region Ri, and R

�
Ai� is the number of regions whose sur-

face is equal to Ai �� Rosenberger’s criterion (Rosenberger) [7] :
The originality of this method lies in its adaptive com-
putation according to the type of region (uniform or tex-
tured). In the textured case, the dispersion of some tex-
tured parameters is used and in the uniform case, gray-
levels parameters are computed.� Vinet’s measure (Vinet) : it is a supervised evaluation cri-
terion. It computes the correct classification rate by com-
paring the result with a ground truth. Since we work in
this study on a database composed of synthetic images,
the Vinet’s measure is used as a point of comparison.

The database used for our tests includes 300 synthetic
images composed of textured and uniform regions. Each

image contains five regions of different types : texture
extracted from the Brodatz’s album [2] or uniform gray-level
with low noise. One database called Unif, is composed of 5
uniform regions, the Mixed one is composed of 2 textured
and 3 uniform regions and finally the Texture one contains
only textured regions (see figure 1).

Each image is segmented by a classification method
(fuzzy K-means) with a number of clusters equal to 5 and
with 3 different types of parameter settings and the EDISON
algorithm [3] :� Segmentation adapted to uniform images : a 5x5 pixels

analysis window and moments from order 1 to 4,� Segmentation adapted to slightly textured images : a 9x9
pixels analysis window, moments from order 1 to 4 and
attributes from the cooccurrence matrix,� Segmentation adapted to strongly textured images : a
15x15 pixels analysis window, moments from order 1 to
4, attributes from the cooccurrence matrix and the nor-
malized autocorrelation,� Segmentation by the EDISON algorithm with defaults
parameters (with the weight map option).

Figure 1: Example of one image in each database a) Unif, b)
Mixed and c) Texture.

We used the correlation factor of each criterion as
indicator of similarity (see Table 1) between two criteria. It
was computed on the 1200 segmentation results (300 images
and 4 methods). The absolute value of the correlation factor
of two criteria is near zero when they are complementary
and near 1 when they are linearly dependent.

The criteria which obtain the best correlation factor with
the Vinet’s measure (reference) are Zeboudj, Borsotti and
Rosenberger. In the uniform case (database Unif), the two
criteria Zeboudj and Borsotti give the best results. When
some regions in the image are textured (databases Mixed and
Texture), the Rosenberger criterion is more efficient.

2.2 Fusion of criteria

In order to improve the previous evaluation criteria, we
suggest to fusion them. A possible method consists in
linearly combining the three previous criteria. The goal is
so to determine the optimal linear coefficients

�
a �b �c� such

as the linear combination of the selected criteria has the



Unif Mixed Texture
Borsotti -0.845 -0.264 -0.207
Zeboudj 0.909 -0.003 -0.142

Inter-region 0.200 0.227 0.181
Intra-region 0.158 0.030 0.256
Intra-inter 0.226 0.096 0.010

Rosenberger 0.277 0.143 0.355

Table 1: Correlation factors for each evaluation criterion with
Vinet’s measure for each image database.

most similar behavior to the Vinet’s measure. We propose
here to use again the correlation factor with the Vinet’s
measure computed on the 1200 segmentation results. The
optimization method we use is a genetic algorithm. This
method is appropriate because the objective function to
maximise is non-linear and this approach gave good results
in previous applications [8].

Genetic algorithms determine solutions of functions by
simulating the evolution of a population until survival of
best fitted individuals. Survivors are individuals obtained by
crossing-over, mutation and selection of individuals from the
previous generation. A genetic algorithm is defined by con-
sidering five essential data :

1. genotype : a set of characteristics of an individual such as
its size. A vector of parameters

�
a �b �c� is considered as

an individual,
2. initial population : a set of individuals characterized by

their genotypes. It is composed of a set of random values
of parameters,

3. fitness function : this function provides to quantify the
fitness of an individual according to the environment. We
take the correlation factor with the Vinet’s measure over
the 1200 segmentation results,

4. operators on genotypes : they define alterations on geno-
types in order to evoluate the population during genera-
tions. There exists three types of operators :� individual mutation : genes of an individual are mod-

ified in order to better adapt to the environment. We
use the Non-Uniform mutation process which ran-
domly selects one chromosome j, and sets it equal
to a non-uniform random number.� selection of an individual : individuals that are not
adapted to the environment do not outlive to the next
generation. We used the normalized geometric rank-
ing selection method which defines a probability Pi
for each individual i to be selected.� crossing-over : two individuals can reproduce them-
selves by combining their genes. We use the arith-
metic crossover which produces two complementary
linear combinations of the parents.

5. stopping criterion : this criterion allows to stop the evolu-
tion of the population. We choose to consider the stability

of the standard deviation of the evaluation criterion of the
population.

Given these five information, the execution of the genetic al-
gorithm is realized in four steps :
1. definition of the initial population and computation of the

fitness function of each individual,
2. selection and crossing-over of individuals of the popula-

tion,
3. evaluation of individuals in the population,
4. back to the step 2 if the stopping criterion is not satisfied.

3. EXPERIMENTAL RESULTS

We use the previous genetic algorithm to combine the three
selected evaluation criteria : Borsotti, Zeboudj and Rosen-
berger. We use a population of 100000 individuals and 200
iterations in the genetic algorithm. We obtain for each case
(textured, uniform, mixed or unknown) optimal linear coef-
ficients. In order to quantify the benefit of fusion, we present
in the Table 3, the correlation factor on each database (Unif,
Mixed, Texture and global) obtained by the best criterion and
after fusion.

Global Unif Mixed Texture
best criterion 0,7068 0,9009 0,2638 0,3554
After fusion 0,7711 0,9483 0,2934 0,4195

Table 2: Comparison of the correlation factor with the Vinet’s
measure with the best criterion and after fusion.

We remark that the fusion process provides an increase
of performance of nearly 10% compared to the best crite-
rion for each database. We illustrate the efficiency of the
approach on two real images of different types : the first one
is considered as mixed and the second one as textured.

a) Outdoor image

The well known image ”CAR” (see figure 2) is an
outdoor scene with uniform (sky,...) and textured regions
(tree,...). It is considered as mixed, so we used the linear co-
efficients for this case.

Three evaluation criteria (Intra-Inter, Intra et Borsotti)
consider the EDISON segmentation result as the best (see
Table 3). As for us, this segmentation result seems to be
effectively visually the best one. Some evaluation criteria,
such as the Rosenberger’s and Zeboudj’s ones, prefer another
segmentation result. But, if we focus on the fusion criterion,
the EDISON segmentation result is preferred.

b) Radar image

The second image is a radar one (see Figure 3). As the
image is very noisy, this image can be considered as textured.

The segmentation result that can be visually considered
as the best one is again the EDISON one. Table 4 show the



Figure 2: a) Original image and three segmentation results.

FCM PCM EDISON
Borsotti 3.9530 1.6831 0.2165
Zeboudj 0.6424 0.6330 0.5305

Inter 0.2716 0.2725 0.2302
Intra 4.3969 4.4407 4.6605

Intra-Inter 0.5482 0.5517 0.5418
Rosenberger 0.615 0.6176 0.5043

Fusion -3.8875 -1.8573 -0.4979

Table 3: Comparison of different segmentation results of an
outdoor image by different evaluation criteria.

Figure 3: a) Radar image and three segmentation results.

values of each evaluation criterion. If we focus on the Rosen-
berger criterion, the value for the EDISON result is much
better than the other segmentation results. On the contrary,
the Zeboudj’s criterion has a bad value for this segmentation
result. If we consider now the fusion result, we see that the
EDISON segmentation result is again correctly preferred.

FCM PCM EDISON
Borsotti 0.1952 0.2793 0.0293
Zeboudj 0.1094 0.1172 0.0432

Inter 0.1401 0.1394 0.2559
Intra 6.2846 7.5824 1.1364

Intra-Inter 0.5196 0.5214 0.5419
Rosenberger 0.4699 0.4677 0.9074

Fusion -0.1157 -0.1983 0.2381

Table 4: Comparison of different segmentation results of a
radar image by different evaluation criteria.

4. CONCLUSIONS AND PERSPECTIVES

Segmentation evaluation is a great challenge and has lots of
applications (comparison of segmentation methods, choice
of parameters of a segmentation method for an image,...). We
presented in this paper a brief comparative study of unsuper-
vised evaluation criteria. We also showed the benefit of lin-
early combining the best ones to improve their performance.
A genetic algorithm is used to determine the optimal coeffi-
cients. We are currently investigating on other fusion meth-
ods to automatically derive a more complex combination.
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