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ABSTRACT

A precision positioning algorithm employing low data
rate ultra wideband (UWB) technology is proposed.
The positioning algorithm utilizes cross-correlation for
estimating time difference of arrival (TDOA) between
UWB pulses received at multiple receivers and provides
a precise location estimate of the signal source thanks
to FFT interpolation. The geolocation estimate is ob-
tained from an iterative maximum likelihood estimator
implemented as a Gauss-Newton algorithm. The effec-
tiveness of the proposed precision positioning algorithm
is verified by way of computer simulations.

1. INTRODUCTION

Precision geolocation and tracking of emitters is an im-
portant application of UWB technology [1]. The unique
advantages of low-rate UWB in combating multipath
propagation make it well-suited for accurate localization
of sources by employing TDOA techniques. The basic
idea behind UWB is to excite a wide-band electromag-
netic radiator with very short and rapid rising pulses,
approximating an impulse function, which in turn gen-
erates high frequency wideband signals. The benefits of
increased RF bandwidth are well understood. From a
communications point of view, UWB offers the following
advantages:

• immunity to multi-path cancellation,
• low interference to existing systems,
• secure communications,
• increased time resolution,
• low-power consumption.

According to the FCC definition, a UWB signal must
have a 10 dB bandwidth of at least 500 MHz and the
fractional bandwidth must be at least 0.2, as determined
by the −10 dB band-edge frequencies [2].

Taking advantage of precise time of arrival (TOA)
measurements, precision geolocation techniques have
been developed based on TOA measurements of short-
duration UWB pulses [3]. In large-noise environ-
ments, time delay estimation based on generalized cross-
correlation [4] can provide better performance than sim-
ple TOA estimation. The sampling of the analog UWB
waves can be challenging. This is because of the large
Nyquist rate. In [5] a subband channelization technique
was proposed to reduce the required sampling rate. In
this paper, we present a bandpass sampling technique
to reduce the sampling rate. In geolocation applica-
tions, reduced sampling results in decreased range res-
olution. To restore the range resolution, we develop a

novel high-resolution cross-correlation technique incor-
porating FFT interpolation.

2. GEOLOCATION BY TDOA

Geolocation by TDOA is a passive localization method
that employs TDOA estimates of signals arriving at spa-
tially distributed receivers at known locations. Central
to geolocation by TDOA is the availability of time de-
lay estimates at multiple pairs of receivers. For the sake
of simplicity we will restrict our attention to 2-D local-
ization of a stationary source using stationary receivers.
Extension to 3-D localization is straightforward.

The UWB signal transmitted by the source arrives at
the receivers with time delays proportional to the range.
The receiver locations are given by the two-dimensional
column vectors ri = [xi, yi]

T , i = 1, . . . , N , and the
source location to be estimated by p = [xp, yp]

T . The
range vectors are di = p− ri. For N receivers (N ≥ 3),
the TDOA estimates between pairs of receivers can be
utilized to estimate the location of the emitter. Each re-
ceiver picks up a delayed, attenuated and possibly cor-
rupted version of the UWB signal transmitted by the
source, denoted si(t). The si(t) are fed to the TDOA
estimator. The geolocation algorithm uses the TDOA
estimates and the receiver locations ri to estimate the
UWB source location. Under the Gaussian distribution
assumption for the TDOA estimates, a maximum like-
lihood (ML) estimate of the source location can be ob-
tained by maximizing the joint probability density func-
tion of the TDOA estimates. The ML estimate can be
written as

p̂ML = argmin
p

JML(p) (1)

where JML(p) is the ML cost function

JML(p) = eT (p)Σ−1
e(p) (2)

and e(p) is the TDOA error vector

e(p) =







‖p − r2‖ − ‖p − r1‖ − ĝ12

‖p − r3‖ − ‖p − r1‖ − ĝ13

...
‖p − rN‖ − ‖p − r1‖ − ĝ1N







(N−1)×1

. (3)

Here ĝ1i is the range difference of arrival (RDOA) esti-
mate between receiver 1 and receiver i, given by

ĝ1i = g1i + n1i = cτ̂1i (4)

where g1i = ‖di‖ − ‖d1‖, n1i is the i.i.d. zero-mean
Gaussian RDOA noise, c is the speed of electromagnetic
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Figure 1: UWB receiver employing bandpass sampling.

wave propagation in open space and τ̂1i is the TDOA
estimate between receiver 1 and receiver i. In (2) Σ is
the covariance matrix of the RDOA noise:

Σ = σ2
n
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(5)

where σ2
n is the RDOA noise variance.

Equation (1) does not have a closed-form solution.
An iterative numerical solution can be formulated by
using the Gauss-Newton (GN) algorithm—also known
as the Taylor series method:

p̂k+1 = p̂k − (JT
k Σ

−1
Jk)−1J

T
k Σ

−1
e(p̂k), k = 0, 1, . . .

(6)
where Jk is the (N − 1) × 2 Jacobian matrix of e(p)
evaluated at p = p̂k:

Jk =







(p̂
k
−r2)T

‖p̂
k
−r2‖

− (p̂
k
−r1)T

‖p̂
k
−r1‖

...
(p̂

k
−rN )T

‖p̂
k
−rN‖ − (p̂

k
−r1)

T

‖p̂
k
−r1‖







. (7)

The GN iterations are stopped when the update term
satisfies

‖p̂k+1 − p̂k‖
2
2 < η (8)

where η is a threshold that is used as a stopping crite-
rion.

Despite its almost quadratic convergence, the GN al-
gorithm requires an initial guess p̂0 that is sufficiently
close to the ML solution in order to avoid divergence.
An initial guess can be obtained from another closed-
form estimate (see e.g. [6, 7, 8, 9, 10, 11, 12]) or geo-
metric insight into the localization scenario. The ML
estimator enjoys certain desirable properties such as as-
ymptotic unbiasedness and asymptotic efficiency.

3. UWB TDOA ESTIMATION

Suppose that a UWB signal source transmits pulses at
regular intervals. Because of the multipath effects, the
transmitted pulse arrives at the receivers with multiple
delayed and attenuated replicas. Given the short pulse
duration of a UWB pulse, the receiver will be capable
of discriminating between direct pulse and multi-path
reflected replicas. Only the first arriving pulse is used
for TDOA estimation. This also provides immunity to
multipath effects.
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Figure 2: Implementation of cross-correlation for preci-
sion TDOA estimation.

A simplified block diagram of the proposed UWB re-
ceiver for geolocation purposes is shown in Fig. 1. The
receiver comprises a low noise amplifier (LNA), a mixer
and an analog-to-digital converter (ADC). The UWB
receiver avoids Nyquist rate sampling of the pulse by
employing a mixer circuit followed by a lowpass filter
that generates an equivalent lowpass signal. Given the
typically large fractional bandwidth of UWB pulses, the
equivalent lowpass signal can be further bandlimited by
choosing an appropriate LPF cut-off frequency at the
expense of spreading the received pulse. This spread-
ing has no undesirable effect on pulse detection as long
as the first pulse arrival detection is carried out before
digitization, e.g., by using a tunnel diode detector. The
advantage of lowering the LPF cut-off frequency is to
achieve further reduction in the required sampling rate.

The sampled pulses are next applied to a cross-
correlator in a central hub for TDOA estimation. The
bandpass sampling permits a significant reduction in
sampling frequency. For example, for centre frequency
Fc = 5 GHz and 10 dB bandwidth W = 1 GHz,
the Nyquist rate will be 12 GHz and the bandpass
sampling frequency 1 GHz. In this case, the Nyquist
rate is prohibitively large. The range resolution that
can be achieved at the bandpass sampling frequency is
c/Fs = 3×108/109 = 0.3 m. If the sampling rate is fur-
ther reduced by way of lowpass filtering the signal to a
smaller bandwidth, the range resolution becomes larger.

A disadvantage of bandpass sampling is poor range
resolution. For bandpass sampled signals the range res-
olution can be improved by interpolation. Interpolation
can be implemented by upsampling and lowpass filtering
or by employing FFT, zero padding and IFFT [13]. We
propose to incorporate the latter interpolation method
into cross-correlation estimation as shown in Fig. 2, re-
sulting in a cost-effective precision TDOA estimation
method. The TDOA estimation and geolocation algo-
rithms are implemented in a central hub that interfaces
to the receivers through the ADC outputs. The P -point
FFT of si(k) is

Si(n) =

P−1∑

k=0

si(k)e−j2πkn/P , n = 0, 1, . . . , P − 1.

To avoid distortion due to circular convolution the si(k)
may need to be zero padded before taking the FFT.
For TDOA estimation between s1(k) and si(k), i =
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Figure 3: Simulated UWB wave and its amplitude spec-
trum.

2, . . . , N , we first compute

V (n) = S∗
1 (n)Si(n)

where ∗ denotes complex conjugate. Assuming that P is
even, interpolation by a factor of L is simply achieved by
zero padding V (n) to a total length of LP before taking
the IFFT. Zero padding in the FFT domain is done by
inserting (L − 1)P zeros between V (nc) and V (nc + 1)
where nc is the highest-frequency FFT bin defined by
nc = ⌊P/2⌋. Thus, the zero-padded V (n) is given by

Vz(n) = [V (0), . . . , V (nc), 0, 0, . . . , 0
︸ ︷︷ ︸

(L − 1)P times

, V (nc + 1),

. . . , V (P − 1)].

(9)

The LP -point IFFT of Vz(n) gives the cross-correlation
function interpolated by a factor of L:

ρ1i(τ) =
1

LP

LP−1∑

n=0

Vz(n)ej2πτn/(LP ). (10)

Interpolation by zero padding avoids computationally
demanding upsampling and lowpass filtering operations.
For large L, the IFFT operation becomes computation-
ally expensive. However, a significant reduction in com-
plexity is achievable by discarding the zero terms in the
IFFT expression in (10) and by restricting the IFFT
computation to the lags of interest only using the Go-
ertzel algorithm [14]. The lags of interest represent the
range of possible time delays |τ | ≤ τmax. The values of
ρ1i(τ) for negative lags are easily obtained by exploiting
the periodicity of Vz(n). An estimate of RDOA is given
by

ĝ1i = c
Ts

L
argmax

τ
|ρ1i(τ)|. (11)

4. SIMULATION STUDIES

A UWB wave has been simulated with centre frequency
Fc = 6 GHz and 10 dB bandwidth W = 2 GHz. The
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Figure 4: Localization geometry.

25.92 25.94 25.96 25.98 26 26.02 26.04 26.06 26.08
26.95

26.96

26.97

26.98

26.99

27

27.01

27.02

27.03

27.04

x−axis (m)

y−
ax

is
 (m

)

Figure 5: Geolocation estimates at −30 dBW noise level
for L = 10.

fractional bandwidth of the wave is 1/3, which complies
with the FCC requirements [2]. The simulated UWB
pulse and its spectrum are shown in Fig. 3. The GN al-
gorithm has been simulated with RDOA estimates ob-
tained from the interpolated cross-correlation method
developed in Section 3. The initial guess of the GN algo-
rithm was set to the geometric centre of the receiver lo-
cations. The cross-correlation parameters were P = 500
and L = 10. The LPF at the mixer output was imple-
mented as a Butterworth filter of order 10 and cut-off
frequency 1 GHz. The sampling frequency of the ADC
was set to Fs = 2 GHz, which gives a range resolution
of c/Fs = 3 × 108/2 × 109 = 0.15 m. Interpolation by
L = 10 reduces the range resolution to 1.5 cm.

Noise Power (dBW) Bias Norm (m) MSE
−40 0.0045 3.85 × 10−5

−35 0.0059 7.29 × 10−5

−30 0.0061 1.62 × 10−4

−29 0.0059 2.16 × 10−4

−28 0.0064 3.20 × 10−4

−27 0.0073 4.67 × 10−4

−26 0.2520 10.40

Table 1: Bias and MSE performance for L = 10.

The simulated localization geometry with four re-
ceivers is shown in Fig. 4. The received UWB
pulses were assumed to be corrupted by additive white
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Figure 6: Geolocation estimates at −30 dBW noise level
for L = 1.

Gaussian noise. The bias and mean-squared error
(MSE) performance of the GN algorithm was estimated
using 1000 Monte Carlo simulations. The results are
given in Table 1 for several noise power values. The
GN algorithm performs extremely well until the noise
power exceeds −26 dBW (approx. 2.5 mW). The result-
ing geolocation accuracy is better than 2 cm with a bias
of approx. 0.5 cm. The geolocation estimates for noise
power of −30 dBW are shown in Fig. 5. Note the dis-
crete nature of the geolocation estimates arising from
sampling of the received signals.

Noise Power (dBW) Bias Norm (m) MSE
−40 0.0245 5.99 × 10−4

−35 0.0245 5.99 × 10−4

−30 0.0244 6.04 × 10−4

−29 0.0243 6.25 × 10−4

−28 0.0239 6.59 × 10−4

−27 0.0233 7.54 × 10−4

−26 0.2544 13.24

Table 2: Bias and MSE performance for no interpola-
tion.

The simulations were repeated for L = 1, i.e., no
interpolation. The bias and MSE performance is given
in Table 2. Compared with Table 1, the geolocation
algorithm exhibits increased bias and MSE. The geolo-
cation estimates for noise power of −30 dBW are shown
in Fig. 6. Note that the quantization of the estimates
due to sampling is quite coarse compared with the case
of L = 10 in Fig. 5.

5. CONCLUSION

A UWB precision geolocation method utilizing band-
pass sampling and interpolated cross-correlation was
proposed. The effectiveness of the algorithm was
demonstrated by way of computer simulations. A signif-
icant reduction in sampling rate was achieved by band-
pass sampling the received UWB signals. The loss in
range resolution due to bandpass sampling was recov-
ered by a novel cross-correlation method incorporating
FFT interpolation.
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