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Abstract—This paper deals with frequency offset estimation
algorithms that exploit sample correlations of the examined
sequence as described in [1], [2]. While previous work has
only considered the phase offsets between succeeding correla-
tion values, we want to demonstrate that it is possible to ob-
tain better results by considering phase offsets between more
correlation lags. The improvement is especially notable for
low signal-to-noise ratios (SNR). Further, we will show, that it
is possible to either improve performance, by restricting the
estimation range (with no additional complexity) or by using
more complex algorithms without having to sacrifice estima-
tion range.

I. INTRODUCTION

Frequency offset estimation has been discussed in many
previous publications. Most of these publications exploit
sample correlations to generate the frequency offset esti-
mate. There are, however, many different ways to obtain
this estimate from the sample correlations.
[3] and [4] describe simple estimators that are efficient
and have a very low computational complexity. It is
shown that it does make a difference whether we use
phase-unwrapping and operate on the phase-angles only,
or whether we obtain phase differences by complex mul-
tiplications. In [5] the power consumption in circuits for
these two approaches was compared. Both do not per-
form well for low signal-to-noise ratios (SNR), however,
because they exploit one correlation lag, only. A small im-
provement could be obtained by using greater delays (and
thus sacrificing estimation range).
The schemes proposed in [6] and [7] do improve perfor-
mance by using more correlation lags. The drawback is,
that these approaches suffer from a significantly reduced
estimation range.
The approach presented in [1] and [2] also exploits several
correlation lags. However, it does not suffer from a reduced
estimation range, because it evaluates the phase differences
between succeeding sample correlation values, only. While
the estimation range is very large in this case, most authors
assume that common frequency offsets are about 10% of
the symbol rate r = 1

T
or less (where T is the symbol-

time).
Hence, one possibility to improve performance is to sim-
ply restrict the estimation range of [1] and [2]. A reduced
range would still be sufficient for most applications, while
the performance is improved without increasing complex-
ity.
The second approach is also based on the schemes

from [1], [2]. In this case, we evaluate more than just one
phase rotation between two correlation lags. That is, we
consider several of them to further improve performance.
The drawback of this approach is, that the computational
complexity is increased.

II. SYSTEM MODEL

We assume that we receive a single-frequency complex
tone, that is disturbed by additive white Gaussian noise
(AWGN). This means that we assume, that any modula-
tion has been undone. This could be achieved either by us-
ing known symbols (e.g. a preamble) or by using an M -th
power synchronizer for 2π/M -rotationally symmetric sig-
nal constellations.
Sampling the signal at rate T yields r(k)

r(k) =
√

Ese
j(2π∆fkT+Φ)+n(k), 0 ≤ k ≤ L−1. (1)

Here Es is the energy of the each symbol, ∆f is the fre-
quency offset, k is the time-index, Φ is the phase-offset,
n(k) is a noise-sample, and L is the length of the received
sequence.
Note, that ∆f and Φ are deterministic, unknown con-
stants and the noise-samples are zero mean, complex, white
Gaussian random variables with variance σ2

n in real and
imaginary part.
For such a model the Cramer-Rao lower bound (CRB),
which describes the smallest estimation variance that could
be achieved by any estimator, can be derived [9]. It is given
by:

σ2
CR =

3

2π2T 2

1

ρL(L2 − 1)
, (2)

where ρ indicates the SNR, which is defined as

ρ =
Es

2σ2
n

. (3)

Several estimators do approach the CRB at moderate to
high SNR. Usually, a threshold effect can be observed at
lower SNR regions. That means, that the performance of
estimators starts to degrade rapidly below a certain SNR.
The focus of this work is, to present estimators that per-
form better in this low-SNR region.

A. Frequency offset estimation schemes using sample-wise
phase-increments

We would like to compare our algorithm to schemes that
rely on the sample autocorrelation function, which is given



by

R(l) =
1

L − l

L−1
∑

k=l

r(k)r∗(k − l). (4)

Another option would be to evaluate the angle of each
multiplication result in (4) and take the average over the
angles. These different approaches have been compared
in [3], where we can see that the form in (4) might offer an
advantage at lower signal-to-noise ratios (SNR), while the
phase-averaging is preferred for high SNR-values.
The estimator in [7], which we call the L&R-estimator, is
given by

∆f̂ =
1

πT (N + 1)
arg

{

N
∑

l=1

R(l)

}

, (5)

where N is the maximum delay considered. It can be seen
as design parameter. Higher values do improve estimator
performance at lower frequency offsets, but they reduce the
estimation range. The problem is that only phase rotations
within ±π can be used for estimates, since otherwise am-
biguities would arise.
The Fitz-estimator is very similar, but performs phase un-
wrapping:

∆f̂ =
1

πTN(N + 1)

N
∑

l=1

arg {R(l)} . (6)

This estimator obviously suffers from a reduced estimation
range, too.
[1] suggested a simple scheme that can handle multi-
ple symbols, while still maintaining a large estimation
range. His idea was to evaluate the phase offsets between
autocorrelation-values with succeeding delays:

ϕ(l) = [arg{R(l)} − arg{R(l − 1)}]
π

−π . (7)

Here, we would also like to examine the effect of using

R1(l) = R(l)R∗(l − 1) (8)

instead. While it is very similar to the previously described
scheme, it does offer some advantages concerning the es-
timation range as we shall see later. Both schemes only
evaluate the phase-offsets between autocorrelation values
with a single lag. This ensures that the phase rotation is
kept as small as possible, which explains the large estima-
tion range.
Using ϕ(l) we obtain the frequency offset estimate in flat
fading channels according to [1] as

∆f̂ =
1

2πT

N
∑

l=1

β(l)ϕ(l). (9)

Here, β(l) are weight factors, that can be obtained from the
covariance matrix of ϕ = [ϕ(1), ϕ(2), . . . , ϕ(N)]T . In the
following, we will refer to this as the M&M-estimator.
[8] suggested to use a uniform weights in slow and mod-
erate fading conditions. This leads to a small performance

degradation, only, and it is not necessary to estimate any
covariance matrix.
The other possibility would be to use (8), which gives us

∆f̂ =
1

2πT
arg

{

N
∑

l=1

R1(l)

}

. (10)

B. Improving the M&M-Estimator by Estimating the Offset
in the Sample Correlation Function

There is a simple method to improve the estimates that
are obtained by the previously described estimators. It is
based on the fact, that we can view the sample autocorrela-
tion function as a new sequence in which we can perform
another frequency offset estimation. This new sequence is
shorter than the original one, but the samples have a much
higher SNR, with the phase rotations between the samples
having the same mean. The original M&M-estimator can
therefore be seen as a simple estimation scheme that has
been applied to the sample correlation function. This point
should be emphasized here. We principally still apply
well known standard estimators, but we do not do it on
the original sequence, but the sample correlation function
instead.

1) Improving the M&M-Estimator by Limiting the Esti-
mation Range:
It is well known, that for simple estimation schemes (like
the estimators in [3] or [4]) can offer a better performance,
if the estimation range is reduced. In this case, different
correlation lags are chosen for computation, which means,
that the estimation range is affected, but the complexity re-
mains the same.
Here, we want to apply the same idea to the M&M-
estimator. In its original form, only sample correlations
with distance one are considered (see (7)). Instead, we
could use a different distance D:

ϕ(l) = [arg{R(l)} − arg{R(l − D)}]
π

−π (11)

or
R1(l) = R(l)R∗(l − D). (12)

ϕ(l) and R1(l) can now simply be inserted into (13)
and (14), where we have adjusted (9) and (10) to the new
estimation range:

∆f̂ =
1

2πTD

N
∑

l=1

β(l)ϕ(l) (13)

and

∆f̂ =
1

2πTD
arg

{

N
∑

l=1

R1(l)

}

. (14)

2) Improving the M&M-Estimator by Using Several
Phase Offsets between Correlation Values:
A further improvement can be achieved, if several correla-
tion lags are used like in [6] or [7]. The proposed estimator



would still suffer from a reduced estimation range, but
would be expected to perform better than the previously
described scheme. A drawback of this approach is that the
computational complexity is considerably increased.

3) Improving the M&M-Estimator by Iterative Estima-
tion:
Using the M&M-estimator again on the sample correlation
values is another option, which has the advantage that the
estimation range is not reduced. Further, we might try to do
this in several iterations, since we always evaluate a sample
correlation function, which can then be used for a further
estimation. In every iteration, we would obtain a shorter
sequence than before, but the SNR of the samples keeps
increasing.
Like in the previously described scheme, here we also have
to consider that there is a significant increase in computa-
tional complexity.

III. SIMULATION RESULTS

In this section we want to compare the simulation results
in AWGN environments.
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Fig. 1. Normalized MSE, Sequence Length L = 128, ∆fT = 0.05.
Comparison of the effect of different delays in the M&M-estimator.

Figure 1 shows the impact of using higher delays in the
M&M-estimator. We chose a frequency-offset ∆fT =
0.05 and we vary the number of autocorrelation samples
N that are used in the M&M-estimator. We can see that
for smaller numbers of N the improvement by using sam-
ple correlation values with larger delays D is greater. For
N = 10 we gain about 2 dB in most SNR-regions. For
larger numbers of N (here we chose N = L

2 = 64) there is
still some improvement in the lower SNR-range, whereas
in the higher SNR-region the performance remains almost
the same. The threshold effect can still be observed at lower
SNR-values, however. We can conclude that in systems,
where the maximum frequency offsets are limited, it would
be a good idea to use greater lags D for the phase differ-
ence evaluation, since we do not encounter any increase in

computational complexity, while getting an improvement –
especially for small values of N .
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Fig. 2. Normalized MSE, Sequence Length L = 128, ∆f = 0. Effect of
using several correlations lags in the second stage of the M&M-estimator
(in contrast to just using different delays).

The next step is to exploit the results of multiple corre-
lations. In the previous example, we saw that with small
delays we could still obtain a reasonable estimation range.
To demonstrate the effect of using several correlation lags
we set the frequency offset to ∆f = 0. This way, we can
purely examine the effect of the two schemes without any
influence from frequency offsets. Otherwise, large delays
would not be possible and the differences between differ-
ent schemes would not be that apparent. Again, we show
the results for two different cases. In the first we chose
N = 10 samples, while in the second we use the maxi-
mum number of samples N = L

2 . The second parameter in
this case is, the delay D up to which the phase differences
between the previously obtained autocorrelation samples
are exploited. If we simply use the Fitz-Estimator, then the
maximum delay is still the parameter which limits the esti-
mation range. As we can see from the results in Figure 2,
the improvement compared to estimators, that simply op-
erate on one specific delay, is quite small. The problem is
that all the correlation lags greater than the maximum delay
are still not exploited here. The estimation range is slightly
increased by the multiple correlation-lag approach, since
here phase offsets with lower lags, which have a greater es-
timation range, are used as well.
The next step is to use a M&M-estimator in the second it-

eration as well. The advantage is that the estimation range
does not depend on the maximum delay that is used. This
time the frequency offset is ∆fT = 0.05, again. In Fig-
ure 3 we see the results in two scenarios. In the first we
chose N = 16 and the delay D = 4 in order to maintain
a reasonable estimation range. In the estimator, that uses
the M&M scheme in the second stage as well, a maximum
delay D = 8 was chosen. Here, we can see that simply
choosing a greater delay seems to offer the better results.
In the second case, we have N = 64 and the delay is kept
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Fig. 3. Normalized MSE, Sequence Length L = 128, ∆fT = 0.05.
The use of a M&M-estimator in two stages.

at D = 4 (again, to ensure a reasonable estimation range).
For the second stage in M&M-estimation, D = 32 was
chosen. Here, we can see a small improvement in the very
low-SNR region. It is not very big, though. But we still
have the advantage that the estimation range is not reduced
by applying the M&M-scheme twice.

One problem has not been discussed so far. That is
the evaluation of phases according to the original M&M-
scheme. If we have phase-values close to π, it can easily
happen that phase-ambiguities occur (i.e. the result might
be either close to +π or close to −π). These phase ambi-
guities cause problems, because values close to ±π might
cancel out when taking the sum. While it is not a real
problem, when applying the traditional M&M-estimator, it
does become a problem when greater correlation lags are
exploited in the two-stage M&M-estimator. The solution
could be to use (10). Since here we are dealing with com-
plex numbers, phase-ambiguities may still occur after the
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Fig. 4. Normalized MSE, Sequence Length L = 128, ∆fT = 0.05.
Comparison of different ways to evaluate phase-offsets.

summation, but the summation-process is not disturbed. In
any case it is just important to get values close to either +π
or −π (while the original M&M-scheme could produce 0).
The ambiguity does not influence the result, because this
phase is compared to other phases and thus just a relative
measure is evaluated at this point (that is why values around
0 do cause problems).
In Figure 4 we compare estimation according to (9)
and (10) for ∆fT = 0.05 and M&M-estimators with
N = 64. We can see that the differences are not huge,
although the phase-averaging according to (7) does per-
form better at low SNR, while the linear estimator accord-
ing to (8) is slightly better at high SNR-values. Overall,
the differences are not huge, however, and it depends on
the context which approach is better suited.

IV. CONCLUSION

We have proposed a few methods to improve the perfor-
mance of a well-known frequency offset estimation algo-
rithm [1]. The advantage of [1] over other commonly used
estimators is the large estimation range. This is much more
than what is required in many systems. Therefore, some of
the presented schemes aim at improving the estimation ac-
curacy and sacrificing range (without any additional com-
putational complexity). Another option is to treat the sam-
ple autocorrelation, which is used for estimation, as a new
sequence with a certain frequency offset. That means that
any of the well known estimation algorithms could be ap-
plied to it.
From the results we can see, that an improved performance
can be achieved – especially in the low-SNR region.
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