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ABSTRACT
We consider the problem of joint multi-user detection and
channel parameter estimation in a space-time bit-interleaved
coded modulation (ST-BICM) scheme for an asynchronous
DS-CDMA uplink transmission over frequency selective
channels. The performance of standard coherent detectors
relies on the availability of accurate estimates of the chan-
nel parameters and Doppler shifts. Conventionally, these
are estimated using pilot symbol in the burst, a technique
that reduces both the energy- and bandwidth efficiency. We
will derive an iterative estimation technique, based on the
SAGE algorithm, that combines pilot symbols and informa-
tion from the detector in an elegant and efficient manner.
We show through computer simulation that the proposed re-
ceiver considerably outperforms conventional channel esti-
mation schemes using the same number of pilot symbols.

1. INTRODUCTION

Direct-Sequence Code-Division Multiple-Access (DS-
CDMA) systems have the ability to accommodate multiple
users in multi-path fading environments. Recently developed
coding and detection schemes allow a reliable transmis-
sion of multiple users at very high data rates. However,
these complex detection schemes are very sensitive to
synchronization errors.

Currently, a lot of effort is being devoted to developing
powerful parameter estimation algorithms. In a multi-user
context, several algorithms have been presented to jointly
synchronize and detect the different users. Most of them are
based on the Expectation-Maximization (EM) [1,2] or Space
Alternating Generalized Expectation Maximization (SAGE)
algorithm [3–5] and have been shown to have excellent per-
formance in a wide variety of scenarios. However, these al-
gorithms only exploit information from training symbols. To
achieve a satisfactory performance, a non-negligible part of
the data burst should be occupied by training symbols which
significantly decreases the bandwidth efficiency. Only re-
cently, algorithms that also exploit information of the un-
derlying error-correcting code have started to surface (see
[6–10]). These estimation algorithms operate by iterating
between decoding and estimation, where improved decoding
leads to more reliable parameter estimates, leading to im-
proved decoding etc. Although such techniques are by now
accepted for simple scenarios, some major modifications are
required for more complex situations.

How one may include code properties for multi-user ST-
BICM frequency and channel parameter estimation is the
topic of the current paper. This paper is a continuation of
our work from [11–14] where we have applied the SAGE al-
gorithm to code-aided estimation in a variety of scenarios.

Here this work is extended to include carrier frequency es-
timation and combines problems related to channel estima-
tion using multiple-antennas, supporting multiple users for a
static multi-path system.

2. SYSTEM MODEL

We consider an uplink DS-CDMA with Ku users. The
transmitter-end of the k-th user encodes a block of Mb bits
(bk), interleaves and groups them into blocks of q bits. The
resulting block of coded bits (ck) is mapped to a sequence
of Md symbols, belonging to a 2q-point complex constella-
tion W. Multiplexing with Mt pilot symbols yields the se-
quence dk = [dk [−Mt ] , . . . ,dk [Md −1]]. The complex sym-
bols dk [m] are shaped by a normalized spreading waveform
pk(t).

The resulting signal propagates through a multi-path fad-
ing channel, with L paths, supposed to be constant over one
block of data and varying independently from block to block.
We consider a system with receive diversity, where the re-
ceiver is equipped with an array of nR antennas. The channel
impulse response, as seen by the p-th receive antenna for the
signal of the k-th user is given by

g(p)
k (t) =

L

å
l=1

g(p)
k,l d (t − t(p)

k,l ). (1)

where g(p)
k,l and t(p)

k,l are the complex gain and path delay
of the l-th propagation path. We group these parameters
h

(p)
kl = [g(p)

kl ,t(p)
kl ]. We further assume that each user is af-

fected by a different frequency offset Fk caused by an oscilla-
tor mismatch or Doppler shift, independent of the antenna in-
dex. The latter is an acceptable assumption since all antennas
can share the same oscillator. The 2×nR ×L+1 parameters
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[

Fk,
{

h
(p)
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}

,∀p, l
]

.

The data frames are corrupted by a vector of independent ad-
ditive white Gaussian noise n(t) with power spectral density
2N0. Hence, the equivalent baseband signal on the different
antennas at the base station is given by the (nR ×1) vector:

r(t) =
Ku

å
k=1
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å
m=−Mt

dk [m]uk(t −mTd)e
j2pFkt +n(t)

=
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L
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sk,l(t,dk,hk,l ,Fk)+n(t) (2)
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Figure 1: Receiver operation flow chart.

or, with obvious notations

r(t) =
Ku

å
k=1

sk(t,dk,Qk)+n(t) (3)

= s(t,D,Q)+n(t) (4)

where Td denotes the symbol period and uk(t) =
[

u1
k(t) . . .u

nR
k (t)

]T
. Here, up

k (t) results from the convolution
of gp

k (t) with the normalized spreading waveform pk (t). We

have introduced Q = [{Qk} ,∀k] and D =
[

dT
1 , . . . ,dT

Ku

]T .
The receiver consists of two main blocks: an iterative de-

tector (with iteration indexed by m), an iterative estimator
(with iterations indexed by k). The receiver iterates between
these blocks, with corresponding iteration index x . A flow
chart describing the operation of the receiver is presented in
Fig. 1. The remainder of this paper is devoted to the opera-
tion of the estimator block.

Detector

We assume an iterative detector, based on [15], consisting
of a MMSE interference canceling equalizer, a soft demap-
per and a decoder. As the equalizer requires knowledge of
the channel, it is imperative that accurate estimates of the
unknown channel parameters Q are available. As this paper
will focus solely on the estimation problem, the exact type of
detector is irrelevant. The only important aspects are (i) that
it is iterative and (ii) that at each iteration it computes approx-
imations of the marginal a posteriori probabilities (APPs) of
the coded symbols in D.

Estimator

Estimation of the channel parameters and frequency offsets
is conventionally performed by a data-aided estimation, ex-
ploiting only the presence of the pilot symbols [5,16]. As the
system under consideration may operate at (very) low SNR, a
large amount of pilots are required for accurate estimates, re-
sulting in a reduction of the overall spectral efficiency. In the
next section we will derive an estimator, based on the SAGE
algorithm, that exploits both the pilot symbols and the coded
symbols in an efficient manner.

3. SAGE ESTIMATION

We will project all signals onto a suitable basis, so that r(t)
is represented by a vector r, s(t,D,Q) by s, sk(t,dk,Qk) by

sk, n(t) by n and so forth.

3.1 Principle

The Maximum Likelihood estimation of Q is obtained by
maximizing (w.r.t. Q) the likelihood function:

Q̂ML = argmax
Q

ED [p(r |D,Q )] . (5)

Since both the maximization and the expectation in (5) are
practically impossible to compute, we resort to the SAGE
algorithm to find an estimate of Q: we take a subset of Q,
say qk and define qk̄ = Q \ qk. With qk we associate a so-
called hidden data space zk. Starting from an estimate Q̂(0),
we iteratively compute

Q
(

qk| Q̂(x )
)

= Ezk

[

log p
(

zk|qk, q̂k̄ (x )
)∣

∣r; Q̂(x )
]

and then update the estimate of qk as follows

q̂k (x +1) = argmax
qk

Q
(

qk| Q̂(x )
)

which is a maximization problem of a dimensionality of qk.
We update the different parameters qk, ∀k in a successive
manner.

3.2 Signal Decomposition

Let us decompose our estimation problem. The noise at
the p-th receive antenna (n(p)) can be written as the sum
of weighted KuL zero-mean, mutually independent AWGN
components n

(p)
k,l , such that

n(p) =
Ku

å
k=1

L

å
l=1

√

b (p)
k,l n

(p)
k,l

subject to the constraint åk,l b (p)
k,l = 1. The received signal at

the p-th receive antenna, can be written as

r(p) =
Ku

å
k=1

L

å
l=1

x
p
k,l (6)

with

x
p
k,l = s
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k,l +

√

b (p)
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(p)
k,l .
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Figure 2: BER-performance of the different estimation schemes for one receive antenna (left) and two receive antennas (right).
(PCE/PFE: perfect synchronization, IFE: estimation of frequency offset only (channel known), ICE: estimation of channel only
(frequency known), IFCE: both frequency and channel estimation)
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3.3 Hidden Data selection

3.3.1 Estimation of Fk

Select as hidden data z =

[

{

x
(p)
k,l

}

∀p,l
,D

]

so that
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.

The convergence rate can be maximized by setting b (p)
k,l =

1/L and b (p)
k′,l = 0, for k′ 6= k.

3.3.2 Estimation of h(p)
kl = [g(p)

kl ,t(p)
kl ]

Select as hidden data z =
[
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]

, so that
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The convergence rate can be maximized by setting b (p)
k,l =

1/L and b (p)
k′,l′ = 0, for k′ 6= k or l′ 6= l.

3.4 Practical computation

Performing the above expectations with respect to z are eval-
uated as follows: first of all, expectation w.r.t. x, condi-
tioned on D is very straightforward [5, 16]. For a purely
DA algorithm, this defines the entire algorithm, since expec-
tation with respect to D is trivial. In our case, we will per-
form the expectation with respect to D not only for the pilot
symbols, but also for the coded symbols. It turns out that
this requires the marginal posterior probabilities, the APPs
p
(

dk[m]
∣

∣r, Q̂(x )
)

of all users, i.e. ∀k. Due to space limita-
tions, the mathematical details are omitted here.

3.5 Complexity Reduction

Although the proposed algorithm provides a systematic way
to exploit code properties for channel estimation, its compu-
tational complexity is still very high. We have introduced
two modifications to the receiver to alleviate these problems,
as detailed in [14], resulting in a low-complexity receiver,
where the estimator is now also iterative (with iteration index
k), as depicted in Fig. 1. The key idea lies in maintaining the
state information in the detector while performing the esti-
mation steps, and thus providing multiple parameter updates
for fixed APPs1.

4. NUMERICAL RESULTS

In this section we will provide numerical results to evaluate
the performance of the proposed iterative multiuser receiver.
We have carried out computer simulations for a system with
Ku = 3 users, using a rate R = 1/2 convolutional code and
polynomial generators (23)8 and (35)8 with 8-PSK signal-
ing using Gray mapping. Frames consist of 120 coded data

1The additional iterations (k) correspond to the estimation iterations
without updating the APPs



symbols and 10 training symbols to initialize the SAGE algo-
rithm. The spreading codes are Gold codes of length Nc = 7.
The channels consist of L = 3 taps. We will evaluate the
proposed estimation scheme for mmax = 3 in terms of BER
performance.

Fig. 2 shows plots for different estimation scenarios of
the SAGE algorithm using nR = 1 (left) and nR = 2 (right)
receive diversity. We observe that when the channel state is
known, the detector requires mmax = 3 iterations to converge.
When we estimate the channel parameters with mmax = 3,
the initial estimate (corresponding with x = 0) results in a
substantial BER degradation. With subsequent iterations be-
tween detection and estimation (i.e., increasing x ), the BER
performance improves. The overall system converges after
x = 3 iterations. The resulting BER degradation is below 0.5
dB for all considered SNRs and all configurations (IFE, ICE
and IFCE). The complexity of the receiver can be further re-
duced by decreasing mmax to 1 at the cost of more iterations
between detection and estimation (i.e., higher x ). Therefore
it can be concluded for all scenarios, compared to the DA es-
timation (x = 0), a substantial performance gain is observed
when exploiting the soft information provided by the turbo-
detector to improve the performance.

5. CONCLUSION

We have investigated a DS-CDMA multi-antenna receiver
with bit-interleaved coded modulation, performing iterative
multiuser detection and joint channel and frequency offset
estimation. Different approaches for the estimation were
considered, and we demonstrated that the estimator based on
the low-complexity SAGE algorithm is most suited for this
scenario. The estimator operates by accepting soft informa-
tion from the detector, in the form of a posteriori probabilities
(APPs) of the coded symbols. The computational overhead
of the estimator is minimized by embedding the estimation
stages in the detection stages so that a form of joint detection
and estimation is performed.

The performance of the proposed algorithm is compared
in terms of BER with a DA SAGE algorithm. It turns out that
the SAGE algorithm, exploiting information from all the data
symbols significantly outperforms the DA SAGE algorithm.
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