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ABSTRACT

This paper presents a novel stereophonic acoustic echo canceling
scheme. The proposed scheme is based on the ideas of “simulta-
neous use of two different states of inputs [ Yukawa & Yamada, IE-
ICE 2004]” and “an accelerating weight technique named POWER
[Yukawa & Yamada, EUSIPCO 2004]”. The two states generate
two solution sets, of which the intersection is expected to be fairly
small and to contain the true impulse response of echo paths. The
POWER technique and the simultaneous use of the inputs find a
good direction to the intersection, realizing thus fast convergence.
Numerical examples demonstrate that the proposed scheme signif-
icantly improves the convergence behavior compared with conven-
tional methods in system mismatch (i.e., normalized coefficients er-
ror) and Echo Return Loss Enhancement (ERLE).

1. INTRODUCTION

The objective of this paper is to examine the applicability, to a real
world problem, of the weighting technique named Pairwise Optimal
WEight Realization (POWER) [1, 2], which was originally proposed
for accelerating the adaptive Parallel Subgradient Projection (PSP)
algorithms [3]. We examine the effect of the POWER technique in
its application to Stereophonic Acoustic Echo Cancellation (SAEC)
problem, which is well-known to be one of the most challenging
problems.

The SAEC problem has become a major issue when we design
high quality hands-free systems such as advanced teleconferenc-
ing. A simple system model for SAEC is illustrated in Fig. 1. In
SAEC, the normal equation, to be solved for minimization of the
residual echo, is often ill-conditioned or has infinitely many solu-
tions depending on the transmission paths because of highly cross-
correlated input signals, which is called non-uniqueness problem
[4-8]. A great deal of effort has been devoted to resolve the non-
uniqueness problem; e.g., [4-7]. The adaptive filter should keep
close to the true echo paths in order to avoid relapses of influential
echo with changes of transmission/echo paths. Therefore, fast and
accurate track of the echo paths is strongly required. Moreover, an
adaptive algorithm employed for SAEC must be realized with low
computational complexity, since all 4 acoustic paths from 2 loud-
speakers to 2 microphones should be identified simultaneously by
adapting 4 echo cancelers. Establishing such an efficient algorithm
is the major interest in the study of the SAEC problem [8].

Although a variety of preprocessing techniques have been pro-
posed for resolving the non-uniqueness problem [4-7], we focus on
the one proposed in [7] for simplicity. The technique in [7] alter-
nates two states of inputs periodically, which leads to alternation
of two solution sets, and thus, accurate echo path identification is
attained; see Fig. 2. To accelerate the speed of convergence, an effi-
cient SAEC scheme, based on the Adaptive Projected Subgradient
Method (APSM) [9, 10], was proposed [11], which simultaneously
utilizes both states by using the adaptive PSP techniques [3] at each
iteration. In [11], uniform weights are employed for the computa-
tion of the parallel projection, and further acceleration is expected
by some strategic weight design; see Fig. 2.

In this paper, we propose an efficient fast SAEC scheme that
further develops the method in [11] by the use of the POWER
weighting technique. First, we present a theorem that provides an
efficient way to compute the projection onto the intersection of two
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Figure 1: Stereophonic acoustic echo cancelers; Unit 1 is a preprocessing
unit. Without the unit, this figure illustrates a standard system for SAEC.

ﬁgcl) is the input periodically delayed by the preprocessing unit.

closed half-spaces', which are characterized by three vectors. The
resulting weights turn out to be optimal in the sense of a solution to
a certain worst case optimization problem; see Sec. 3.1. Then, we
present the proposed scheme, which exploits the theorem (POWER)
just once after taking respective uniform averages of projections
with current and previous state data; see Fig. 4. Because of this
simple construction, the scheme is more efficient in computation
than the original POWER technique proposed in [1]. Numerical
examples demonstrate that the proposed scheme significantly im-
proves the convergence behavior compared with some conventional
methods in system mismatch (i.e., normalized coefficients error)
and Echo Return Loss Enhancement (ERLE). All results are shown
without proves due to lack of space; proves are given in [2].

2. PROBLEM FORMULATION

Throughout the paper, the following notations are used (k € N: time

index, superscript 7": transposition):
o speech vector: s, € R (L € N* := N\ {0})
o ¢-th transmission path: 6;) € RE (i =1,2)
e i-th input: ugj) = 3%19(1;) eR(GE=1,2)
e i-th input vector: ugj) = [ugj), fe 7u§;zN+1]T e RN (N e N%)
e preprocessed 1-st input: all e RY; see Fig. 1

~(1)

(1
e input vector: uy, := 52) c . =R2N
k

o input matrix: Uy, = [ug, -, up_rt1] € RZVX" (r € N¥)
e i-th echo path: h?i) eRY (i=1,2)
T

. Lk . LK x THT
e estimandum: h* := [h(1> 7h(2) " et

e adaptive filter (echo canceler): hy, := [hscl)T, hg)T]T eH
e noise: 1y i= [N, N1, s Np—rr1] L €RT
e output: dj, := Ufh* +mn, €R”
o residual error function: ey (h) := U} h—dj € R"
Here, #(:= R?Y) is a real Hilbert space equipped with the

'Given v € # (¢ real Hilbert space) and a closed subspace M C 2,
the translation of M by v defines the linear variety V := v+ M = {v+
m:m € M}. If dim(M~*) =1, V is called hyperplane, which can be
expressed as V = {x € 7 : (a,z) = c} for some (0 #)a € # and c € R.

“:={x € :(a,z) <c}is called a closed half-space with its boundary
V.
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Figure 2: A geometric interpretation of existing methods and the direction
of this paper.

inner product (x,y) := Ty, Va,y € #, and its induced norm

x| := (ach)l/z, Ve € . For any nonempty closed convex
set C' C S, the projection operator Po : 7 — C' is defined by
|l — Pc(x)|| = mingec || —yl||,Y& € #. The notation |S|
stands for the cardinality of a set .S.

The goal of the SAEC problem is to cancel the echo all the time;

ie., u%h* - u%hk ~ 0, Yk € N. Since only u, and dj, are observ-

able, a common alternative goal is to suppress the residual error;

ie., ex(hy) =0, Yk € N. Due to high correlation between input
) 2

signals u;,* and u~, this problem has infinitely many solutions de-
pending on 61y and 6(,), which is the so-called non-uniqueness

problem [4-8]. Without well-approximating h*, echo relapses by
change of transmission paths (1) and (). Hence, it is strongly

desired to keep hy, close to h*.
3. PROPOSED STEREOPHONIC ACOUSTIC ECHO
CANCELING SCHEME

Following a useful theorem and a proposition, we present a fast

SAEC scheme that efficiently develops the method? in [11] by the
theorem.

3.1 Projection onto Intersection of Two Half-Spaces

For convenience, let us define, Va,b € 77,
“(a,b):={yeH:(a—b,y—b) <0} C 7. (1)

~(a,b) is a closed half-space if a # b. Given an ordered triplet
(8,a,b) € A3 (= H x A x H) st. ~(s,a)N ~(s,b) #0,
define #(s,a,b) := P —(5.4)0 ~(s,b)(8), namely #(s,a,b) de-
notes the projection of s onto ~(s,a)N ~(s,b) in S. The

POWER technique is based on pairwise uses of the following theo-
rem.

Theorem 1 (Projection onto Intersection of Two Half-Spaces)

Given (s,a,b) € #3 st. ~(s,a)N ~(s,b) #0, let £ := |la—

s||%, ¢:=||b—s||% and = (a— s,b— s). Then, we have
P(s,a,b) =s+p{w'a+(l1—w")b—s}, )

where

* 1, ifn>& orn>¢
M _{W if m <min{¢,(},

1, fn=>¢
x._ )0, ifn=>¢,
4G

m7 if m <min{¢, C}.
Now, let us define the operator 2 : [0,1] x [0, ) x 3 — 2 by
2(w,u,8,a,b) :=s+p{wa+(1—w)b—s}. 3)

By (2) and (3), we see that #(s,a,b) = 2(w*,u*,s,a,b). An
optimality of w* and p* is shown below; see also Fig. 3.

2In [11], two schemes were proposed; one is based on the parallel projec-
tion by simultaneous use of data and the other is based on the selective pro-
jection by min-max criteria. In this paper, we focus on the former scheme.

Figure 3: A geometric interpretation of Theorem 1 and Proposition 1.
Given (s,a,b) € 573, (w*,u*) of P(s,a,b) [= 2(w*,u*,s,a,b)]is the
best among all (w, ) € [0,1] x [0, ) of 2(w,u,s,a,b).

Proposition 1 (Optimality of w* and ©*)
Given (s,a,b) € #3 s.t. “(s,a) N ~(s,b) # 0, let
Sw, 1, 2) = ||s— 2| = | 2(w, 1, 5,a,b) — z||>. Then, (w* ")
in Theorem 1 are optimal in the sense of

wh ut) e argmax min w,pu,z)|. (4
OB € B, ) Loe oo ~en )] @
Intuitively, (w*, u*) achieves a worst case optimization, or, in other
words, (4) implies that (w*, u*) is a solution to the max-min prob-

lem of maximizing, over w and y, the minimum of ¢(w, i, z) over

Since an extension of Theorem 1 to more general number of
(more than two) closed half-spaces is computationally expensive,
the POWER technique exploits Theorem 1 in a pairwise manner
for more than two closed half-spaces. For saving the computational
complexity, the proposed scheme just exploits Theorem 1 once an
iteration unlike the one in [1].

3.2 Proposed Scheme

It is reported that the non-uniqueness problem is mitigated by re-

ducing the correlation between input signals ug) and ug) , and such

reduction can be achieved by generating multiple states of inputs in
one of two channels with some preprocessing [4—7]. In this pa-
per, we utilize a simple but effective one named input sliding tech-
nique [7]. The input sliding technique generates two states of in-
puts with some modification in Unit 1 in Fig. 1 artificially; one uses
no modification and the other uses one-sample-delayed input sig-

(1) M

nal in channel 1, [ug_)l.,uk_z,~~~ ,uk_N]T. It is not hard to see
that the latter modification is equivalent to the change of 6(y) into

5(1> = [0,95)]T. This implies that the two states have different

solution sets, say 7'(0(1)) and 7(6(y)), since a solution set de-
pends on transmission paths in the SAEC problem; e.g., [S]. The
technique switches the state of inputs every Q/2 iterations, where
Q@ € N* denotes the cycle period.

Figure 2 illustrates a geometric interpretation of “a conventional
method in [7]” and “the method in [11] with the uniform weights”,
which we call Uniformly Weighted PSP (UW-PSP). The conven-
tional method approaches the solution set corresponding to the cur-
rent state of inputs in each half-period (The dotted arrows show its
behavior during a cycle period). On the other hand, thanks to the si-
multaneous use of data from both states, the UW-PSP finds a better
direction to h*. This paper aims to achieve even better direction by
the POWER technique.

Now, let us explain the proposed scheme, which starts with
the computation of certain projections as shown below. Define the
stochastic property set

Cilp)i={he A gi(h) = llex ()P~ p<0}, (5

where p > 0. Since the projection onto Cy(p) requires, in gen-
eral, huge computational complexity, we employ an approximat-
ing projection onto the closed half-space H, (h) := {x € J :
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Figure 4: Simple system models with eight parallel processors to imple-
ment the proposed scheme. féc) ={1,2,3,4}, Jlip) ={5,6,7,8}.

(x—h, gi(h))+gr(h) <0} D Ck(p), which has the following
simple closed-form expression:

h+ =W 0 (h), ifh¢ H (h)
P, h — (h)|]? I k )
Hk(h)( ) {h gl otherwise.

Here, gx(h) =2Uer(h) and PH;(h)(h) = Po,.(p)(h); see
[3]. It should be remarked that PH,;(h)(h) requires O(N) com-

plexity. For given ¢ € N*, define the control sequences ﬂ,£°> =
{k,k—1,...,k—q+1} CNand

0 0<k<Q/2,
(p)._ )™
T = {yﬁ@/z, k> Q2.

Here, J,ic) and fép) are index sets from the current state and the
previous (or other) state, respectively. The proposed scheme is
given as follows.

Scheme 1

Suppose that a sequence of closed convex sets (C,(p)),c., C I
is defined as in (5), where .9 := Upen (fk@ U f,ip)). Let hy €

J€ be an arbitrarily chosen initial vector. Then, define a sequence
(h)gen C I through the following two stages.

1-st Stage:  Uniformly Averaged Directions

hk+///]5g) w;(ﬁg)PH;(hk)(hk)*hk ,
Lef,iy
if 7% #0,

hy,, otherwise,

hgcg) =

vk eN, Vg e {c,p}, (6)

where w\® = 1( )
17

= é Ve e J,ig)) and

e wl(cg) HPHZ(hk)(hk) - thz

2

ME = H s Wi Py, () — B

ifhe €N, 0 H, (hg),
“k
1, otherwise.

2-nd Stage: Reasonably Averaged Direction by POWER

hi,  ifne=—VE&G #0,
hici1 1= § by + AN 2 (i D A — ),
otherwise,

Figure 5: A geometric interpretation of the proposed scheme. féc) =
{kk—1}, 7P = (k= Q/2,k—Q/2—1}.

Vk € N, where \j, € [0,2] is the step size, ny, := (hgf) — hk,h;ﬁp> —

hi), & = [BY — by |2 and ¢, := |hY — hy |

A simple system model to implement Scheme 1 is shown in
Fig. 4. In (6), each term in the summation can be computed si-
multaneously with ¢ concurrent processors. This implies that the
proposed scheme is inherently suitable for real time implementa-
tion with 2¢ concurrent processors. A geometric interpretation of
Scheme 1 is illustrated in Fig. 5. For simplicity, we set ¢ = 2 and
A = 1. In the figure, the estimandum h* (see Sec. 2) is assumed
to belong to the dotted area; i.e., h* €\ _ o, , o H, (hg). This

LESUS

assumption holds if C(p) is defined with appropriately chosen p;
for details, see [3]. We see that the scheme attains a good direction
of update.

Next, a simple proposition is given, followed by showing cer-
tain optimality of the proposed scheme.

Proposition 2 For any h* € mbeﬂ,£°>uf,i‘“> H; (hg),
(=R h*—h¥) <0, Vg e {c.p}. )

Proposition 2 implies that by (1)

e () H (hy)=he ~(hy,hl)n ~ (k). ®)
resEusP)

By Proposition 1 and (8), the weights realized in the second stage

are “optimal” in the sense of a solution to a worst case optimization

problem; see under Proposition 1. An explicit formulation of the
weights realized by the proposed scheme is presented below.

Proposition 3 (Weight Realization)
Let (hy)peny C 2 be a sequence of filtering vectors generated by

Scheme 1. Suppose 1y, # —/ExCi. Then, hy_| is rewritten by

k
hi 1 :=hg+ X\ Ay wf >PH;(hk)(hk) —h |,
wesPus?

Vk € N, where A\, € [0,2] is the step size and

(k) :
e Wt HPHL () (P&) = th

2

k
My = H Lejic)uﬁlgp)wg "Prr- () (i) —

Fhi #0,c p00 50 1o (),
1, otherwise.

Here, the weights

)
wilt = 0 Q)
(1 —w,*c)///kp wkp Ve fk(;p)7

A



(k)

satisfy w, ' > 0 and o1 with ap =

wesPus? w]
|f£c) |w,’;///]£0>wl(:> + \ﬂ,ip) |(1— w;;)//{lip)wép) and wy, the weight
to calculate & <hk, hgﬂc),hg’)); see Theorem 1.

Proof is omitted because it is given by simple algebra. Proofs of
Theorem 1 and Propositions 1 and 2 are presented in [12]. Proposi-
tion 3 means that the proposed scheme can be written in the form of
the method in [11]. We see that the proposed scheme realizes strate-
gic and computationally efficient weight design for the method in
[11], since the proposed scheme utilizes the POWER technique just
in the second stage (see Fig. 4) and the weights in the second stage
are optimal (see the discussion before Proposition 3).

4. NUMERICAL EXAMPLES

This section presents a numerical comparison of the proposed
scheme with the UW-PSP, the Affine Projection Algorithm (APA)
and the Normalized Least Mean Square (NLMS) algorithm (see,
e.g., [13]) with a common preprocessing technique proposed in
[7]. Input signals in channel 1 are modified with the cycle QQ =
800; see Sec. 3.2. The tests are performed, for estimating h* €
M = R2(N = L = 256), under the noise situation of SNR
:= 10log;o(E{z1}/E{n}}) = 25dB, where zj, := (uj,h") and
E{-} denote pure echo (echo without noise) and expectation, re-
spectively. We utilize a male’s speech signal, for (sj)xen, recorded
at sampling rate 16kHz. To measure the achievement level for echo
path identification as well as that of echo cancellation, we evaluate

* 2
System Mismatch(k) := 10log, M, Vk € N, ERLE(k) :=

[N
10log;g ———=CL v e N

£10 T i {ui h) '

For the proposed scheme and the UW-PSP, we set A\, = 0.4 and
q= \J,ﬁc)| = |ﬂ,§p)| =8, Vk € N. The stochastic property sets are
designed by r = 1 and p = max{(r —2)o?,0} (= 0), where o is the
variance of noise; for detailed discussion on the choice of p, see [3].
For the NLMS, the step size is set to i = 0.2. For the APA, the step
size is set to = 1, 0.05. For numerical stability against observable
poor excitation of the speech input signals, certain regularization

and threshold are utilized, which is the reason for the observable

flat intervals, . . .
Figure 6 depicts the performance of the algorithms in Sys-

tem Mismatch and ERLE. We observed that the proposed scheme
achieves dramatically faster convergence than the UW-PSP both in
System Mismatch and in ERLE. Moreover, the proposed scheme
achieves lower level misidentification of echo paths and higher level
ERLE than the other algorithms. Finally, we remark that the in-
crease of computational complexity that accompanies the proposed
scheme can be somewhat alleviated by 2q concurrent processors.

5. CONCLUSION

This paper has presented an efficient fast stereophonic acoustic echo
canceling scheme. The proposed scheme has found a good direction
of update with low computational complexity thanks to an efficient
use of the POWER technique. Numerical examples have verified
the efficacy of the proposed scheme. The results suggest the appli-
cability of the POWER weighting technique to a real world prob-
lem.
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