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ABSTRACT

This paper investigates the performance of time—
frequency based EEG spike detection techniques. The non-
stationary nature of EEG makes time-frequency methodol-
ogy a suitable tool for analysis. The high instantaneous
energy of spikes are reflected as very localised energy pat-
terns in the time-frequency domain with reduced time dura-
tion toward the high frequency area. These characteristics
of spikes in the time-frequency domain makes them recog-
nisable from the background. Two recently published spike
detection methods, based on quadratic time-frequency and
adaptive time-frequency parameterisation are considered in
this investigation. These methods have been applied on both
synthetic and real EEG signals. The obtained results show
the superior performance of the quadratic time-frequency
method for detecting EEG spikes in terms of resolution and
robustness to noise.

1. INTRODUCTION

The electroencephalogram (EEG) is an invaluable measure-
ment for monitoring brain activity [1]. Brain functioning af-
fects the morphology of EEG. Consequently, seizures, which
are a kind of brain abnormality, can be detected using spikes
and their firing pattern in EEG [2]. In this application, per-
formance of the seizure detection technique depends on the
accuracy of the spike detection algorithm.

In the context of EEG, spikes can be defined as transient
signals, clearly distinguishable from the background activ-
ity with a duration ranging from 20 to 70 msec [3]. Hence,
spikes are nonstationary short-time broadband signals with
high instantaneous energy [4]. Spike detection in nonstation-
ary signals, such as EEG, is a challenging problem. Detec-
tion methods based on the assumption that the background
signal is stationary or quasi-stationary (as assumed in [4, 5])
are not appropriate for these type of signals.

The nonstationarity of EEG makes time-frequency dis-
tributions (TFDs) a suitable tool for spike detection. As
spikes are short time broadband events, they are represented
as ridges in the time—frequency (TF) domain. In this domain,
the high instantaneous energy of spikes allows them to be dis-
tinguishable from the background [6] (see Figure 1). As can
be seen, in this domain spikes are represented as highly lo-
calised energy pattern especially in the high frequency area.

There are several EEG spike detection methods in the lit-
erature, for example [4, 6, 7, 8]. It has previously been shown
that the TF-based methods are superior to the time domain
based approach [9]. The aim of this paper is to compare the
performance of the two most recently published TF-based
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Figure 1: EEG data containing epileptic spikes: (a) Time domain,
(b) TF domain (using a quadratic TFD).

EEG spike detection methods, namely quadratic TF (QTF)
[6] and adaptive TF parameterisation (ATFP) [8], using both
synthetic and real EEG signals.

2. REVIEW OF TF-BASED SPIKE DETECTION
TECHNIQUES

2.1 The ATFP technique

This approach uses the matching pursuit (MP) atomic de-
composition technique. MP is an algorithm for which a sig-
nal representation can be obtained using a redundant collec-
tion of waveforms (atoms), , generally referred to as a dic-
tionary  [10]. MP builds up a signal representation iter-
atively by finding the atom at each iteration for which the
projection of the remaining signal energy is maximum. The
MP representation of a signal, s, using m atoms is shown as

m—1 ) )
s = (R's, i) i+R'm @)
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where R's is the representation error after i iterations and (-, -)
is the inner product function.



The dictionary used in this paper is a redundant Gabor
time-frequency dictionary . The Gabor atoms  (¢) are in-
dexed by the vector of parameters ={s, , |, which respec-
tively relate to the dilation, translation and modulation trans-
formations of a Gaussian function (7). Therefore, MP de-
composition provides a time-frequency parameterisation of a
signal [8].

Signal spikes, which are characterized by high energy
and short time duration, are represented as atoms with a sig-
nificantly high coefficient value and small scale parameter
when using MP. Temporal information related to the spike
can then be obtained from the translation parameter. There-
fore, by setting a threshold for the atom scale parameter and
atom coefficient value, signal spikes can be detected using
MP time-frequency parameterisation.

2.2 The QTF technique

In this approach the signal of interest is first mapped to the TF
domain using a quadratic time-frequency distribution (TFD).
The TFD of a signal can be thought of as a joint representa-
tion of both time and frequency domains of the signal energy
density. For a given signal, s(n), its TFD can be expressed
as [11]:

A= e e ek ) o,
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where z(n) is the analytic signal associated with s(n), and
g(v, ) is a 2—dimensional kernel that determines the charac-
teristics of the TFD. For example, by setting g(v, ) =1 we
get the Wigner-Ville distribution (WVD).

One problem inherit with quadratic TFDs, particularly
WVD, are cross-terms, which are a result of the quadratic
nature of the transformation. Cross-terms can make interpre-
tation of the time-frequency representation difficult. In order
to reduce the effect of cross-terms, the Choi-Williams distrri-
bution (CWD) is used. The CWD is a member of the reduced
interference TFD class of quadratic TFDs [12]. The CWD is
defined by setting the kernel g(v, ) in Eq. (2) to v
where is a smoothing parameter ( > 0) [12].

In the QTF technique, the TFD is then enhanced by low-
pass filtering the singular vectors of the TFD matrix. The
enhancement process using the SVD-based technique atten-
uates the effects of noise in the TFD of the signal [13].

Once the TFD of the signal has been enhanced, two rela-
tively high frequency slices are extracted. If both frequency
slices have any spike signature at the same position, the re-
lated time domain signal is judged to contain spike at that
position. Spikes in these frequency slices appear as local
maxima, which are well localised in time. To further am-
plify these signatures, the smoothed nonlinear energy opera-
tor (SNEO) is applied to the frequency slices [4]. Assuming
that the nonlinear energy operator is applied to the time-
series x(¢) representing a given TFD frequency slice, the out-
put is given by:

pr(e)] = (1) = x(r + Dx(r — 1) 3)

To further enhance the localisation of the local maxima, (.)
is smoothed using a Bartlett window. Values of the smoothed

(.) are then thresholded to keep only the more energetic
local maxima.

3. PERFORMANCE COMPARISON

The performance of the two above mentioned techniques in
detecting EEG spikes have been evaluated using both syn-
thetic and real life EEG signals as described in the following
sections.

3.1 Synthetic Newborn EEG signal

To simulate newborn EEG signals containing spike events
the following synthetic signal model is used:

x(t) = (1) +5(1), )

where /(t) and s(¢) are the spike train set and the background
EEG signal, respectively. The background s(¢) is a normal
newborn EEG signal simulated using fractal dimension (FD)
theory [14]. To create a fractal signal with a known FD we
start with a complex Hermitian sequence, S,,(f), with con-
stant amplitude over all f. This sequence is representative
of white Gaussian noise in the Fourier domain, which can be
represented by

Sw(f) =r(f)e! V), (5)

where r and  refer to the magnitude and phase of the se-
quence, respectively. For white Gaussian noise the cho-
sen phase sequence should be uniformly distributed over
[0,2 ). However, because of the Hermitian symmetry of
Sw(f) only half of the phase sequence needs to be randomly
selected as this will also define the second half of the phase
sequence. This sequence can then be multiplied by the power
law sequence that relates to the desired FD to give the power
spectrum of the fractal signal

S () =Sul)- ;| — () O, ©)

where 7 is the new magnitude sequence of the fractal signal.
The Fourier transform of the fractal signal is then given as

Fr(f) = Vrr(f)el V. (7)

To obtain the fractal signal in the time domain we take the
inverse Fourier transform of (7), such that

set)= [ Fe(f)e” 1y ()

To simulate newborn EEG data, the next step is to high pass
filter the fractal signal to remove insignificant power in fre-
quencies less than 0.5Hz [15]. The high pass filtering may
affect the FD of the signal. However, it was shown that the
FD estimate of the filtered signal is approximately the FD es-
timate of the non-filtered signal in FD from 1.25 to 1.65, for
which a large proportion of the real EEG is estimated [14].
To consider nonstationarity in EEG, we chose to create
synthetic epochs of length 256 samples. The theoretical FD
of each epoch is randomly chosen according to a normal dis-
tribution with a mean of 1.525 and standard deviation of 0.1
[14]. The epochs were then high pass filtered with cutoff
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Figure 2: ROC curves showing performance of the QTF (solid
line) and ATFP (dashed line).

frequency randomly selected according to a normal distri-
bution on the interval [0.4,0.65]Hz. The highpass filtering
then gave a varying peak frequency approximately between
[0.4,0.65]Hz. The synthetic epochs were then concatenated
to form the synthetic signal. By forming epochs with vary-
ing FD and high pass cutoff frequencies, the signal will have
a time-varying spectrum. This means that the simulated EEG
signals will be non-stationary which is a characteristic of the
EEG.

After simulating the background signal, the spikes in /(¢)
are distributed randomly over the background signal. The
spikes are taken as triangular symmetric pulses with random
signs, widths which range between 20 and 70msec, and am-
plitudes uniformly distributed between 2.5 and 5.5. The sig-
nal is sampled at a rate of 128 Hz (Fy = 128Hz).

For the purpose of statistically evaluating the two TF-
based spike detection techniques and comparing their per-
formance, multiple x(¢) (see (3)) were created. The signals
x(t) were created with a spike train set /(¢) to background
s(t) ratio (SBR), shown as

2
SBR = 10log;, <§_ ||il((3|2jtt> ,

ranging between [-7.5,7.5]dB with 100 realisations of x(z)
for each SBR. In these simulations the spike train set had 5
randomly distributed spikes (using a uniform distribution).

The detection of spikes using ATFP technique required
setting threshold values for the scale parameter and the co-
efficient value. Our detection method required an atom to
have a scale width between 20 and 100ms for a spike to be
detected. This range is slightly larger than the definition of
a spike in the literature. However, this scale range gave the
best results. Also, to obtain good results for various SBR
the threshold for atom coefficient values was set between
[0.06,0.14] x ||x(¢)]||2, where || - || denotes the /* norm, 0.06
and 0.14 are for the lowest and highest SBR respectively.

To detect spikes using the QTF, two frequency slices are
extracted around 60Hz and 68 Hz. The sharp local maxima,
twice higher than the median value of the frequency slices,

represent the position of spikes in the time domain. In this
approach a spike is considered to exist if its signature is de-
tected at the same position in both frequency slices.

The accuracy of these techniques may be measured by
considering their sensitivity Ry, and specificity Ry, as fol-
lows:

TP
Rsn =
TP+FN
FP
R = 11— 9
P TP+FP ©)

where TP, FN, and FP respectively represent true positive,
false negative and false positive detection rates. Figure 2
shows the Receiver Operating Characteristic (ROC) curves
of the performance values using (4) with SBR chosen be-
tween —7.5dB and 7.5dB, and 100 realisations for each se-
lected SBR. The figure shows that QTF has a better perfor-
mance compared to the ATFP specifically in the area with a
lower specificity which correspond to a lower SBR. These
results indicate that the QTF-based method is more robust to
background EEG amplitude than the ATFP-based method.

3.2 Real Adult EEG signal

To compare the performance of the two techniques on
real EEG, data from http://republika.pl/eegspike were used,
which were provided by the authors of [16]. This dataset
contains 51 4-second epochs containing epileptic spikes. All
of these epochs were used in this assessment.

The parameters for ATFP were redefined for this dataset.
The scale parameter for a spike/ sharp wave to be detected
was set between 25-120 msec. The amplitude threshold was
set at 300 a.u. [8] (i.e. arbitrary units related to the signals in
http://republika.pl/eegspike).

In detecting spikes of the real EEG data using the QTF,
similar with the synthetic signal, we used two frequency
slices extracted around 60Hz and 68Hz. A spike is consid-
ered to exist if its signature is detected at the same position
in both frequency slices.

The 51 epochs of the dataset had 145 epileptic spikes in
total. Table 1 represents the performance results of the two
spike detection techniques applied to these dataset. Using
Eq. (9) the ATFP yielded sensitivity 0.66 and specifity 0.74,
while the QTF resulted sensitivity 0.93 and specifity 0.94.
Both of the techniques provide high TF resolution, however,
the ATFP fails to detect successive spikes that are close to-
gether. In such case, the successive spikes are considered as
a periodic pattern and hence they are represented by atoms
with scale parameters longer than that which is indicative of
spike occurrence.

Parameters  ATFP OTF
TP 65.5% 93.1%
FP 234% 6.2%
FN 344%  6.8%

Table 1: The ATFP and QTF performance results
using the real EEG signals.

Figure 3 shows the TF representation of the EEG data
displayed in Figure 1(a) using the MP decomposition. The
TF representation is obtained by the superposition of the
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Figure 3: TF representation of the EEG data displayed in Figure
1(a) using the MP.

WVD of Gabor atoms selected for the representation such
that

m—1 )
Es(tvf): |<R1S7 i>|2WVD i(t7f)
i=0

(10)

Horizontal lines in the TF plot are representations for
successive spikes which were considered as periodic pat-
terns. Our observations indicate that the ability of ATFP to
detect periodic spikes is highly dependent on the time inter-
val between successive spikes. These successive spikes are
clearly recognisable using the QTF representation (see Fig-
ure 1).

4. CONCLUSION

Performance comparison of two time-frequency based tech-
niques, namely quadratic time-frequency and adaptive time-
frequency parameterisation, for detecting epileptic spikes has
been performed using both synthetic and real EEG data. Ro-
bustness of the techniques to noise and their resolution in
detecting adjacent spikes have been investigated in this pa-
per. Results on synthetic EEG indicate that the technique
based on the quadratic time-frequency is more robust to
background EEG amplitude than the other technique. Also,
this technique is better in detecting successive spikes which
are close in time, while the other technique may consider
these spikes as periodic patterns and hence fail to recognise
them.
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